213 lines
8.4 KiB
C#
Raw Normal View History

2024-10-17 17:23:05 +03:00
using System;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Serialization;
using Random = UnityEngine.Random;
namespace Mirror.Examples.LagCompensationDemo
{
public class ServerCube : MonoBehaviour
{
[Header("Components")]
public ClientCube client;
[FormerlySerializedAs("collider")]
public BoxCollider col;
[Header("Movement")]
public float distance = 10;
public float speed = 3;
Vector3 start;
[Header("Snapshot Interpolation")]
[Tooltip("Send N snapshots per second. Multiples of frame rate make sense.")]
public int sendRate = 30; // in Hz. easier to work with as int for EMA. easier to display '30' than '0.333333333'
public float sendInterval => 1f / sendRate;
float lastSendTime;
[Header("Lag Compensation")]
public LagCompensationSettings lagCompensationSettings = new LagCompensationSettings();
double lastCaptureTime;
// lag compensation history of <timestamp, capture>
Queue<KeyValuePair<double, Capture2D>> history = new Queue<KeyValuePair<double, Capture2D>>();
public Color historyColor = Color.white;
// store latest lag compensation result to show a visual indicator
[Header("Debug")]
public double resultDuration = 0.5;
double resultTime;
Capture2D resultBefore;
Capture2D resultAfter;
Capture2D resultInterpolated;
[Header("Latency Simulation")]
[Tooltip("Latency in seconds")]
public float latency = 0.05f; // 50 ms
[Tooltip("Latency jitter, randomly added to latency.")]
[Range(0, 1)] public float jitter = 0.05f;
[Tooltip("Packet loss in %")]
[Range(0, 1)] public float loss = 0.1f;
[Tooltip("Scramble % of unreliable messages, just like over the real network. Mirror unreliable is unordered.")]
[Range(0, 1)] public float scramble = 0.1f;
// random
// UnityEngine.Random.value is [0, 1] with both upper and lower bounds inclusive
// but we need the upper bound to be exclusive, so using System.Random instead.
// => NextDouble() is NEVER < 0 so loss=0 never drops!
// => NextDouble() is ALWAYS < 1 so loss=1 always drops!
System.Random random = new System.Random();
// hold on to snapshots for a little while before delivering
// <deliveryTime, snapshot>
List<(double, Snapshot3D)> queue = new List<(double, Snapshot3D)>();
// latency simulation:
// always a fixed value + some jitter.
float SimulateLatency() => latency + Random.value * jitter;
// this is the average without randomness. for lag compensation math.
// in a real game, use rtt instead.
float AverageLatency() => latency + 0.5f * jitter;
void Start()
{
start = transform.position;
}
void Update()
{
// move on XY plane
float x = Mathf.PingPong(Time.time * speed, distance);
transform.position = new Vector3(start.x + x, start.y, start.z);
// broadcast snapshots every interval
if (Time.time >= lastSendTime + sendInterval)
{
Send(transform.position);
lastSendTime = Time.time;
}
Flush();
// capture lag compensation snapshots every interval.
// NetworkTime.localTime because Unity 2019 doesn't have 'double' time yet.
if (NetworkTime.localTime >= lastCaptureTime + lagCompensationSettings.captureInterval)
{
lastCaptureTime = NetworkTime.localTime;
Capture();
}
}
void Send(Vector3 position)
{
// create snapshot
// Unity 2019 doesn't have Time.timeAsDouble yet
Snapshot3D snap = new Snapshot3D(NetworkTime.localTime, 0, position);
// simulate packet loss
bool drop = random.NextDouble() < loss;
if (!drop)
{
// simulate scramble (Random.Next is < max, so +1)
bool doScramble = random.NextDouble() < scramble;
int last = queue.Count;
int index = doScramble ? random.Next(0, last + 1) : last;
// simulate latency
float simulatedLatency = SimulateLatency();
// Unity 2019 doesn't have Time.timeAsDouble yet
double deliveryTime = NetworkTime.localTime + simulatedLatency;
queue.Insert(index, (deliveryTime, snap));
}
}
void Flush()
{
// flush ready snapshots to client
for (int i = 0; i < queue.Count; ++i)
{
(double deliveryTime, Snapshot3D snap) = queue[i];
// Unity 2019 doesn't have Time.timeAsDouble yet
if (NetworkTime.localTime >= deliveryTime)
{
client.OnMessage(snap);
queue.RemoveAt(i);
--i;
}
}
}
void Capture()
{
// capture current state
Capture2D capture = new Capture2D(NetworkTime.localTime, transform.position, col.size);
// insert into history
LagCompensation.Insert(history, lagCompensationSettings.historyLimit, NetworkTime.localTime, capture);
}
// client says: "I was clicked here, at this time."
// server needs to rollback to validate.
// timestamp is the client's snapshot interpolated timeline!
public bool CmdClicked(Vector2 position)
{
// never trust the client: estimate client time instead.
// https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
// the estimation is very good. the error is as low as ~6ms for the demo.
double rtt = AverageLatency() * 2; // the function needs rtt, which is latency * 2
double estimatedTime = LagCompensation.EstimateTime(NetworkTime.localTime, rtt, client.bufferTime);
// compare estimated time with actual client time for debugging
double error = Math.Abs(estimatedTime - client.localTimeline);
Debug.Log($"CmdClicked: serverTime={NetworkTime.localTime:F3} clientTime={client.localTimeline:F3} estimatedTime={estimatedTime:F3} estimationError={error:F3} position={position}");
// sample the history to get the nearest snapshots around 'timestamp'
if (LagCompensation.Sample(history, estimatedTime, lagCompensationSettings.captureInterval, out resultBefore, out resultAfter, out double t))
{
// interpolate to get a decent estimation at exactly 'timestamp'
resultInterpolated = Capture2D.Interpolate(resultBefore, resultAfter, t);
resultTime = NetworkTime.localTime;
// check if there really was a cube at that time and position
Bounds bounds = new Bounds(resultInterpolated.position, resultInterpolated.size);
if (bounds.Contains(position))
{
return true;
}
else Debug.Log($"CmdClicked: interpolated={resultInterpolated} doesn't contain {position}");
}
else Debug.Log($"CmdClicked: history doesn't contain {estimatedTime:F3}");
return false;
}
void OnDrawGizmos()
{
// should we apply special colors to an active result?
bool showResult = NetworkTime.localTime <= resultTime + resultDuration;
// draw interpoalted result first.
// history meshcubes should write over it for better visibility.
if (showResult)
{
Gizmos.color = Color.black;
Gizmos.DrawCube(resultInterpolated.position, resultInterpolated.size);
}
// draw history
Gizmos.color = historyColor;
LagCompensation.DrawGizmos(history);
// draw result samples after. useful to see the selection process.
if (showResult)
{
Gizmos.color = Color.cyan;
Gizmos.DrawWireCube(resultBefore.position, resultBefore.size);
Gizmos.DrawWireCube(resultAfter.position, resultAfter.size);
}
}
}
}