2024-10-17 17:23:05 +03:00

391 lines
19 KiB
C#

// snapshot interpolation V2 by mischa
//
// Unity independent to be engine agnostic & easy to test.
// boxing: in C#, uses <T> does not box! passing the interface would box!
//
// credits:
// glenn fiedler: https://gafferongames.com/post/snapshot_interpolation/
// fholm: netcode streams
// fakebyte: standard deviation for dynamic adjustment
// ninjakicka: math & debugging
using System.Collections.Generic;
using System.Runtime.CompilerServices;
namespace Mirror
{
public static class SortedListExtensions
{
// removes the first 'amount' elements from the sorted list
public static void RemoveRange<T, U>(this SortedList<T, U> list, int amount)
{
// remove the first element 'amount' times.
// handles -1 and > count safely.
for (int i = 0; i < amount && i < list.Count; ++i)
list.RemoveAt(0);
}
}
public static class SnapshotInterpolation
{
// calculate timescale for catch-up / slow-down
// note that negative threshold should be <0.
// caller should verify (i.e. Unity OnValidate).
// improves branch prediction.
public static double Timescale(
double drift, // how far we are off from bufferTime
double catchupSpeed, // in % [0,1]
double slowdownSpeed, // in % [0,1]
double absoluteCatchupNegativeThreshold, // in seconds (careful, we may run out of snapshots)
double absoluteCatchupPositiveThreshold) // in seconds
{
// if the drift time is too large, it means we are behind more time.
// so we need to speed up the timescale.
// note the threshold should be sendInterval * catchupThreshold.
if (drift > absoluteCatchupPositiveThreshold)
{
// localTimeline += 0.001; // too simple, this would ping pong
return 1 + catchupSpeed; // n% faster
}
// if the drift time is too small, it means we are ahead of time.
// so we need to slow down the timescale.
// note the threshold should be sendInterval * catchupThreshold.
if (drift < absoluteCatchupNegativeThreshold)
{
// localTimeline -= 0.001; // too simple, this would ping pong
return 1 - slowdownSpeed; // n% slower
}
// keep constant timescale while within threshold.
// this way we have perfectly smooth speed most of the time.
return 1;
}
// calculate dynamic buffer time adjustment
public static double DynamicAdjustment(
double sendInterval,
double jitterStandardDeviation,
double dynamicAdjustmentTolerance)
{
// jitter is equal to delivery time standard variation.
// delivery time is made up of 'sendInterval+jitter'.
// .Average would be dampened by the constant sendInterval
// .StandardDeviation is the changes in 'jitter' that we want
// so add it to send interval again.
double intervalWithJitter = sendInterval + jitterStandardDeviation;
// how many multiples of sendInterval is that?
// we want to convert to bufferTimeMultiplier later.
double multiples = intervalWithJitter / sendInterval;
// add the tolerance
double safezone = multiples + dynamicAdjustmentTolerance;
// UnityEngine.Debug.Log($"sendInterval={sendInterval:F3} jitter std={jitterStandardDeviation:F3} => that is ~{multiples:F1} x sendInterval + {dynamicAdjustmentTolerance} => dynamic bufferTimeMultiplier={safezone}");
return safezone;
}
// helper function to insert a snapshot if it doesn't exist yet.
// extra function so we can use it for both cases:
// NetworkClient global timeline insertions & adjustments via Insert<T>.
// NetworkBehaviour local insertion without any time adjustments.
public static bool InsertIfNotExists<T>(
SortedList<double, T> buffer, // snapshot buffer
int bufferLimit, // don't grow infinitely
T snapshot) // the newly received snapshot
where T : Snapshot
{
// slow clients may not be able to process incoming snapshots fast enough.
// infinitely growing snapshots would make it even worse.
// for example, run NetworkRigidbodyBenchmark while deep profiling client.
// the client just grows and reallocates the buffer forever.
if (buffer.Count >= bufferLimit) return false;
// SortedList does not allow duplicates.
// we don't need to check ContainsKey (which is expensive).
// simply add and compare count before/after for the return value.
//if (buffer.ContainsKey(snapshot.remoteTime)) return false; // too expensive
// buffer.Add(snapshot.remoteTime, snapshot); // throws if key exists
int before = buffer.Count;
buffer[snapshot.remoteTime] = snapshot; // overwrites if key exists
return buffer.Count > before;
}
// clamp timeline for cases where it gets too far behind.
// for example, a client app may go into the background and get updated
// with 1hz for a while. by the time it's back it's at least 30 frames
// behind, possibly more if the transport also queues up. In this
// scenario, at 1% catch up it took around 20+ seconds to finally catch
// up. For these kinds of scenarios it will be better to snap / clamp.
//
// to reproduce, try snapshot interpolation demo and press the button to
// simulate the client timeline at multiple seconds behind. it'll take
// a long time to catch up if the timeline is a long time behind.
public static double TimelineClamp(
double localTimeline,
double bufferTime,
double latestRemoteTime)
{
// we want local timeline to always be 'bufferTime' behind remote.
double targetTime = latestRemoteTime - bufferTime;
// we define a boundary of 'bufferTime' around the target time.
// this is where catchup / slowdown will happen.
// outside of the area, we clamp.
double lowerBound = targetTime - bufferTime; // how far behind we can get
double upperBound = targetTime + bufferTime; // how far ahead we can get
return Mathd.Clamp(localTimeline, lowerBound, upperBound);
}
// call this for every received snapshot.
// adds / inserts it to the list & initializes local time if needed.
public static void InsertAndAdjust<T>(
SortedList<double, T> buffer, // snapshot buffer
int bufferLimit, // don't grow infinitely
T snapshot, // the newly received snapshot
ref double localTimeline, // local interpolation time based on server time
ref double localTimescale, // timeline multiplier to apply catchup / slowdown over time
float sendInterval, // for debugging
double bufferTime, // offset for buffering
double catchupSpeed, // in % [0,1]
double slowdownSpeed, // in % [0,1]
ref ExponentialMovingAverage driftEma, // for catchup / slowdown
float catchupNegativeThreshold, // in % of sendInteral (careful, we may run out of snapshots)
float catchupPositiveThreshold, // in % of sendInterval
ref ExponentialMovingAverage deliveryTimeEma) // for dynamic buffer time adjustment
where T : Snapshot
{
// first snapshot?
// initialize local timeline.
// we want it to be behind by 'offset'.
//
// note that the first snapshot may be a lagging packet.
// so we would always be behind by that lag.
// this requires catchup later.
if (buffer.Count == 0)
localTimeline = snapshot.remoteTime - bufferTime;
// insert into the buffer.
//
// note that we might insert it between our current interpolation
// which is fine, it adds another data point for accuracy.
//
// note that insert may be called twice for the same key.
// by default, this would throw.
// need to handle it silently.
if (InsertIfNotExists(buffer, bufferLimit, snapshot))
{
// dynamic buffer adjustment needs delivery interval jitter
if (buffer.Count >= 2)
{
// note that this is not entirely accurate for scrambled inserts.
//
// we always use the last two, not what we just inserted
// even if we were to use the diff for what we just inserted,
// a scrambled insert would still not be 100% accurate:
// => assume a buffer of AC, with delivery time C-A
// => we then insert B, with delivery time B-A
// => but then technically the first C-A wasn't correct,
// as it would have to be C-B
//
// in practice, scramble is rare and won't make much difference
double previousLocalTime = buffer.Values[buffer.Count - 2].localTime;
double lastestLocalTime = buffer.Values[buffer.Count - 1].localTime;
// this is the delivery time since last snapshot
double localDeliveryTime = lastestLocalTime - previousLocalTime;
// feed the local delivery time to the EMA.
// this is what the original stream did too.
// our final dynamic buffer adjustment is different though.
// we use standard deviation instead of average.
deliveryTimeEma.Add(localDeliveryTime);
}
// adjust timescale to catch up / slow down after each insertion
// because that is when we add new values to our EMA.
// we want localTimeline to be about 'bufferTime' behind.
// for that, we need the delivery time EMA.
// snapshots may arrive out of order, we can not use last-timeline.
// we need to use the inserted snapshot's time - timeline.
double latestRemoteTime = snapshot.remoteTime;
// ensure timeline stays within a reasonable bound behind/ahead.
localTimeline = TimelineClamp(localTimeline, bufferTime, latestRemoteTime);
// calculate timediff after localTimeline override changes
double timeDiff = latestRemoteTime - localTimeline;
// next, calculate average of a few seconds worth of timediffs.
// this gives smoother results.
//
// to calculate the average, we could simply loop through the
// last 'n' seconds worth of timediffs, but:
// - our buffer may only store a few snapshots (bufferTime)
// - looping through seconds worth of snapshots every time is
// expensive
//
// to solve this, we use an exponential moving average.
// https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
// which is basically fancy math to do the same but faster.
// additionally, it allows us to look at more timeDiff values
// than we sould have access to in our buffer :)
driftEma.Add(timeDiff);
// timescale depends on driftEma.
// driftEma only changes when inserting.
// therefore timescale only needs to be calculated when inserting.
// saves CPU cycles in Update.
// next up, calculate how far we are currently away from bufferTime
double drift = driftEma.Value - bufferTime;
// convert relative thresholds to absolute values based on sendInterval
double absoluteNegativeThreshold = sendInterval * catchupNegativeThreshold;
double absolutePositiveThreshold = sendInterval * catchupPositiveThreshold;
// next, set localTimescale to catchup consistently in Update().
// we quantize between default/catchup/slowdown,
// this way we have 'default' speed most of the time(!).
// and only catch up / slow down for a little bit occasionally.
// a consistent multiplier would never be exactly 1.0.
localTimescale = Timescale(drift, catchupSpeed, slowdownSpeed, absoluteNegativeThreshold, absolutePositiveThreshold);
// debug logging
// UnityEngine.Debug.Log($"sendInterval={sendInterval:F3} bufferTime={bufferTime:F3} drift={drift:F3} driftEma={driftEma.Value:F3} timescale={localTimescale:F3} deliveryIntervalEma={deliveryTimeEma.Value:F3}");
}
}
// sample snapshot buffer to find the pair around the given time.
// returns indices so we can use it with RemoveRange to clear old snaps.
// make sure to use use buffer.Values[from/to], not buffer[from/to].
// make sure to only call this is we have > 0 snapshots.
public static void Sample<T>(
SortedList<double, T> buffer, // snapshot buffer
double localTimeline, // local interpolation time based on server time
out int from, // the snapshot <= time
out int to, // the snapshot >= time
out double t) // interpolation factor
where T : Snapshot
{
from = -1;
to = -1;
t = 0;
// sample from [0,count-1] so we always have two at 'i' and 'i+1'.
for (int i = 0; i < buffer.Count - 1; ++i)
{
// is local time between these two?
T first = buffer.Values[i];
T second = buffer.Values[i + 1];
if (localTimeline >= first.remoteTime &&
localTimeline <= second.remoteTime)
{
// use these two snapshots
from = i;
to = i + 1;
t = Mathd.InverseLerp(first.remoteTime, second.remoteTime, localTimeline);
return;
}
}
// didn't find two snapshots around local time.
// so pick either the first or last, depending on which is closer.
// oldest snapshot ahead of local time?
if (buffer.Values[0].remoteTime > localTimeline)
{
from = to = 0;
t = 0;
}
// otherwise initialize both to the last one
else
{
from = to = buffer.Count - 1;
t = 0;
}
}
// progress local timeline every update.
//
// ONLY CALL IF SNAPSHOTS.COUNT > 0!
//
// decoupled from Step<T> for easier testing and so we can progress
// time only once in NetworkClient, while stepping for each component.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void StepTime(
double deltaTime, // engine delta time (unscaled)
ref double localTimeline, // local interpolation time based on server time
double localTimescale) // catchup / slowdown is applied to time every update)
{
// move local forward in time, scaled with catchup / slowdown applied
localTimeline += deltaTime * localTimescale;
}
// sample, clear old.
// call this every update.
//
// ONLY CALL IF SNAPSHOTS.COUNT > 0!
//
// returns true if there is anything to apply (requires at least 1 snap)
// from/to/t are out parameters instead of an interpolated 'computed'.
// this allows us to store from/to/t globally (i.e. in NetworkClient)
// and have each component apply the interpolation manually.
// besides, passing "Func Interpolate" would allocate anyway.
public static void StepInterpolation<T>(
SortedList<double, T> buffer, // snapshot buffer
double localTimeline, // local interpolation time based on server time
out T fromSnapshot, // we interpolate 'from' this snapshot
out T toSnapshot, // 'to' this snapshot
out double t) // at ratio 't' [0,1]
where T : Snapshot
{
// check this in caller:
// nothing to do if there are no snapshots at all yet
// if (buffer.Count == 0) return false;
// sample snapshot buffer at local interpolation time
Sample(buffer, localTimeline, out int from, out int to, out t);
// save from/to
fromSnapshot = buffer.Values[from];
toSnapshot = buffer.Values[to];
// remove older snapshots that we definitely don't need anymore.
// after(!) using the indices.
//
// if we have 3 snapshots and we are between 2nd and 3rd:
// from = 1, to = 2
// then we need to remove the first one, which is exactly 'from'.
// because 'from-1' = 0 would remove none.
buffer.RemoveRange(from);
}
// update time, sample, clear old.
// call this every update.
//
// ONLY CALL IF SNAPSHOTS.COUNT > 0!
//
// returns true if there is anything to apply (requires at least 1 snap)
// from/to/t are out parameters instead of an interpolated 'computed'.
// this allows us to store from/to/t globally (i.e. in NetworkClient)
// and have each component apply the interpolation manually.
// besides, passing "Func Interpolate" would allocate anyway.
public static void Step<T>(
SortedList<double, T> buffer, // snapshot buffer
double deltaTime, // engine delta time (unscaled)
ref double localTimeline, // local interpolation time based on server time
double localTimescale, // catchup / slowdown is applied to time every update
out T fromSnapshot, // we interpolate 'from' this snapshot
out T toSnapshot, // 'to' this snapshot
out double t) // at ratio 't' [0,1]
where T : Snapshot
{
StepTime(deltaTime, ref localTimeline, localTimescale);
StepInterpolation(buffer, localTimeline, out fromSnapshot, out toSnapshot, out t);
}
}
}