slowpoker/Assets/Mirror/Transports/Encryption/EncryptedConnection.cs
2024-10-17 17:23:05 +03:00

596 lines
24 KiB
C#

using System;
using System.Security.Cryptography;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Agreement;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using UnityEngine.Profiling;
namespace Mirror.Transports.Encryption
{
public class EncryptedConnection
{
// 256-bit key
private const int KeyLength = 32;
// 512-bit salt for the key derivation function
private const int HkdfSaltSize = KeyLength * 2;
// Info tag for the HKDF, this just adds more entropy
private static readonly byte[] HkdfInfo = Encoding.UTF8.GetBytes("Mirror/EncryptionTransport");
// fixed size of the unique per-packet nonce. Defaults to 12 bytes/96 bits (not recommended to be changed)
private const int NonceSize = 12;
// this is the size of the "checksum" included in each encrypted payload
// 16 bytes/128 bytes is the recommended value for best security
// can be reduced to 12 bytes for a small space savings, but makes encryption slightly weaker.
// Setting it lower than 12 bytes is not recommended
private const int MacSizeBytes = 16;
private const int MacSizeBits = MacSizeBytes * 8;
// How much metadata overhead we have for regular packets
public const int Overhead = sizeof(OpCodes) + MacSizeBytes + NonceSize;
// After how many seconds of not receiving a handshake packet we should time out
private const double DurationTimeout = 2; // 2s
// After how many seconds to assume the last handshake packet got lost and to resend another one
private const double DurationResend = 0.05; // 50ms
// Static fields for allocation efficiency, makes this not thread safe
// It'd be as easy as using ThreadLocal though to fix that
// Set up a global cipher instance, it is initialised/reset before use
// (AesFastEngine used to exist, but was removed due to side channel issues)
// use AesUtilities.CreateEngine here as it'll pick the hardware accelerated one if available (which is will not be unless on .net core)
private static readonly GcmBlockCipher Cipher = new GcmBlockCipher(AesUtilities.CreateEngine());
// Set up a global HKDF with a SHA-256 digest
private static readonly HkdfBytesGenerator Hkdf = new HkdfBytesGenerator(new Sha256Digest());
// Global byte array to store nonce sent by the remote side, they're used immediately after
private static readonly byte[] ReceiveNonce = new byte[NonceSize];
// Buffer for the remote salt, as bouncycastle needs to take a byte[] *rolls eyes*
private static byte[] _tmpRemoteSaltBuffer = new byte[HkdfSaltSize];
// buffer for encrypt/decrypt operations, resized larger as needed
// this is also the buffer that will be returned to mirror via ArraySegment
// so any thread safety concerns would need to take extra care here
private static byte[] _tmpCryptBuffer = new byte[2048];
// packet headers
enum OpCodes : byte
{
// start at 1 to maybe filter out random noise
Data = 1,
HandshakeStart = 2,
HandshakeAck = 3,
HandshakeFin = 4,
}
enum State
{
// Waiting for a handshake to arrive
// this is for _sendsFirst:
// - false: OpCodes.HandshakeStart
// - true: Opcodes.HandshakeAck
WaitingHandshake,
// Waiting for a handshake reply/acknowledgement to arrive
// this is for _sendsFirst:
// - false: OpCodes.HandshakeFine
// - true: Opcodes.Data (implicitly)
WaitingHandshakeReply,
// Both sides have confirmed the keys are exchanged and data can be sent freely
Ready
}
private State _state = State.WaitingHandshake;
// Key exchange confirmed and data can be sent freely
public bool IsReady => _state == State.Ready;
// Callback to send off encrypted data
private Action<ArraySegment<byte>, int> _send;
// Callback when received data has been decrypted
private Action<ArraySegment<byte>, int> _receive;
// Callback when the connection becomes ready
private Action _ready;
// On-error callback, disconnect expected
private Action<TransportError, string> _error;
// Optional callback to validate the remotes public key, validation on one side is necessary to ensure MITM resistance
// (usually client validates the server key)
private Func<PubKeyInfo, bool> _validateRemoteKey;
// Our asymmetric credentials for the initial DH exchange
private EncryptionCredentials _credentials;
private byte[] _hkdfSalt;
// After no handshake packet in this many seconds, the handshake fails
private double _handshakeTimeout;
// When to assume the last handshake packet got lost and to resend another one
private double _nextHandshakeResend;
// we can reuse the _cipherParameters here since the nonce is stored as the byte[] reference we pass in
// so we can update it without creating a new AeadParameters instance
// this might break in the future! (will cause bad data)
private byte[] _nonce = new byte[NonceSize];
private AeadParameters _cipherParametersEncrypt;
private AeadParameters _cipherParametersDecrypt;
/*
* Specifies if we send the first key, then receive ack, then send fin
* Or the opposite if set to false
*
* The client does this, since the fin is not acked explicitly, but by receiving data to decrypt
*/
private readonly bool _sendsFirst;
public EncryptedConnection(EncryptionCredentials credentials,
bool isClient,
Action<ArraySegment<byte>, int> sendAction,
Action<ArraySegment<byte>, int> receiveAction,
Action readyAction,
Action<TransportError, string> errorAction,
Func<PubKeyInfo, bool> validateRemoteKey = null)
{
_credentials = credentials;
_sendsFirst = isClient;
if (!_sendsFirst)
{
// salt is controlled by the server
_hkdfSalt = GenerateSecureBytes(HkdfSaltSize);
}
_send = sendAction;
_receive = receiveAction;
_ready = readyAction;
_error = errorAction;
_validateRemoteKey = validateRemoteKey;
}
// Generates a random starting nonce
private static byte[] GenerateSecureBytes(int size)
{
byte[] bytes = new byte[size];
using (RandomNumberGenerator rng = RandomNumberGenerator.Create())
{
rng.GetBytes(bytes);
}
return bytes;
}
public void OnReceiveRaw(ArraySegment<byte> data, int channel)
{
if (data.Count < 1)
{
_error(TransportError.Unexpected, "Received empty packet");
return;
}
using (NetworkReaderPooled reader = NetworkReaderPool.Get(data))
{
OpCodes opcode = (OpCodes)reader.ReadByte();
switch (opcode)
{
case OpCodes.Data:
// first sender ready is implicit when data is received
if (_sendsFirst && _state == State.WaitingHandshakeReply)
{
SetReady();
}
else if (!IsReady)
{
_error(TransportError.Unexpected, "Unexpected data while not ready.");
}
if (reader.Remaining < Overhead)
{
_error(TransportError.Unexpected, "received data packet smaller than metadata size");
return;
}
ArraySegment<byte> ciphertext = reader.ReadBytesSegment(reader.Remaining - NonceSize);
reader.ReadBytes(ReceiveNonce, NonceSize);
Profiler.BeginSample("EncryptedConnection.Decrypt");
ArraySegment<byte> plaintext = Decrypt(ciphertext);
Profiler.EndSample();
if (plaintext.Count == 0)
{
// error
return;
}
_receive(plaintext, channel);
break;
case OpCodes.HandshakeStart:
if (_sendsFirst)
{
_error(TransportError.Unexpected, "Received HandshakeStart packet, we don't expect this.");
return;
}
if (_state == State.WaitingHandshakeReply)
{
// this is fine, packets may arrive out of order
return;
}
_state = State.WaitingHandshakeReply;
ResetTimeouts();
CompleteExchange(reader.ReadBytesSegment(reader.Remaining), _hkdfSalt);
SendHandshakeAndPubKey(OpCodes.HandshakeAck);
break;
case OpCodes.HandshakeAck:
if (!_sendsFirst)
{
_error(TransportError.Unexpected, "Received HandshakeAck packet, we don't expect this.");
return;
}
if (IsReady)
{
// this is fine, packets may arrive out of order
return;
}
if (_state == State.WaitingHandshakeReply)
{
// this is fine, packets may arrive out of order
return;
}
_state = State.WaitingHandshakeReply;
ResetTimeouts();
reader.ReadBytes(_tmpRemoteSaltBuffer, HkdfSaltSize);
CompleteExchange(reader.ReadBytesSegment(reader.Remaining), _tmpRemoteSaltBuffer);
SendHandshakeFin();
break;
case OpCodes.HandshakeFin:
if (_sendsFirst)
{
_error(TransportError.Unexpected, "Received HandshakeFin packet, we don't expect this.");
return;
}
if (IsReady)
{
// this is fine, packets may arrive out of order
return;
}
if (_state != State.WaitingHandshakeReply)
{
_error(TransportError.Unexpected,
"Received HandshakeFin packet, we didn't expect this yet.");
return;
}
SetReady();
break;
default:
_error(TransportError.InvalidReceive, $"Unhandled opcode {(byte)opcode:x}");
break;
}
}
}
private void SetReady()
{
// done with credentials, null out the reference
_credentials = null;
_state = State.Ready;
_ready();
}
private void ResetTimeouts()
{
_handshakeTimeout = 0;
_nextHandshakeResend = -1;
}
public void Send(ArraySegment<byte> data, int channel)
{
using (NetworkWriterPooled writer = NetworkWriterPool.Get())
{
writer.WriteByte((byte)OpCodes.Data);
Profiler.BeginSample("EncryptedConnection.Encrypt");
ArraySegment<byte> encrypted = Encrypt(data);
Profiler.EndSample();
if (encrypted.Count == 0)
{
// error
return;
}
writer.WriteBytes(encrypted.Array, 0, encrypted.Count);
// write nonce after since Encrypt will update it
writer.WriteBytes(_nonce, 0, NonceSize);
_send(writer.ToArraySegment(), channel);
}
}
private ArraySegment<byte> Encrypt(ArraySegment<byte> plaintext)
{
if (plaintext.Count == 0)
{
// Invalid
return new ArraySegment<byte>();
}
// Need to make the nonce unique again before encrypting another message
UpdateNonce();
// Re-initialize the cipher with our cached parameters
Cipher.Init(true, _cipherParametersEncrypt);
// Calculate the expected output size, this should always be input size + mac size
int outSize = Cipher.GetOutputSize(plaintext.Count);
#if UNITY_EDITOR
// expecting the outSize to be input size + MacSize
if (outSize != plaintext.Count + MacSizeBytes)
{
throw new Exception($"Encrypt: Unexpected output size (Expected {plaintext.Count + MacSizeBytes}, got {outSize}");
}
#endif
// Resize the static buffer to fit
EnsureSize(ref _tmpCryptBuffer, outSize);
int resultLen;
try
{
// Run the plain text through the cipher, ProcessBytes will only process full blocks
resultLen =
Cipher.ProcessBytes(plaintext.Array, plaintext.Offset, plaintext.Count, _tmpCryptBuffer, 0);
// Then run any potentially remaining partial blocks through with DoFinal (and calculate the mac)
resultLen += Cipher.DoFinal(_tmpCryptBuffer, resultLen);
}
// catch all Exception's since BouncyCastle is fairly noisy with both standard and their own exception types
//
catch (Exception e)
{
_error(TransportError.Unexpected, $"Unexpected exception while encrypting {e.GetType()}: {e.Message}");
return new ArraySegment<byte>();
}
#if UNITY_EDITOR
// expecting the result length to match the previously calculated input size + MacSize
if (resultLen != outSize)
{
throw new Exception($"Encrypt: resultLen did not match outSize (expected {outSize}, got {resultLen})");
}
#endif
return new ArraySegment<byte>(_tmpCryptBuffer, 0, resultLen);
}
private ArraySegment<byte> Decrypt(ArraySegment<byte> ciphertext)
{
if (ciphertext.Count <= MacSizeBytes)
{
_error(TransportError.Unexpected, $"Received too short data packet (min {{MacSizeBytes + 1}}, got {ciphertext.Count})");
// Invalid
return new ArraySegment<byte>();
}
// Re-initialize the cipher with our cached parameters
Cipher.Init(false, _cipherParametersDecrypt);
// Calculate the expected output size, this should always be input size - mac size
int outSize = Cipher.GetOutputSize(ciphertext.Count);
#if UNITY_EDITOR
// expecting the outSize to be input size - MacSize
if (outSize != ciphertext.Count - MacSizeBytes)
{
throw new Exception($"Decrypt: Unexpected output size (Expected {ciphertext.Count - MacSizeBytes}, got {outSize}");
}
#endif
// Resize the static buffer to fit
EnsureSize(ref _tmpCryptBuffer, outSize);
int resultLen;
try
{
// Run the ciphertext through the cipher, ProcessBytes will only process full blocks
resultLen =
Cipher.ProcessBytes(ciphertext.Array, ciphertext.Offset, ciphertext.Count, _tmpCryptBuffer, 0);
// Then run any potentially remaining partial blocks through with DoFinal (and calculate/check the mac)
resultLen += Cipher.DoFinal(_tmpCryptBuffer, resultLen);
}
// catch all Exception's since BouncyCastle is fairly noisy with both standard and their own exception types
catch (Exception e)
{
_error(TransportError.Unexpected, $"Unexpected exception while decrypting {e.GetType()}: {e.Message}. This usually signifies corrupt data");
return new ArraySegment<byte>();
}
#if UNITY_EDITOR
// expecting the result length to match the previously calculated input size + MacSize
if (resultLen != outSize)
{
throw new Exception($"Decrypt: resultLen did not match outSize (expected {outSize}, got {resultLen})");
}
#endif
return new ArraySegment<byte>(_tmpCryptBuffer, 0, resultLen);
}
private void UpdateNonce()
{
// increment the nonce by one
// we need to ensure the nonce is *always* unique and not reused
// easiest way to do this is by simply incrementing it
for (int i = 0; i < NonceSize; i++)
{
_nonce[i]++;
if (_nonce[i] != 0)
{
break;
}
}
}
private static void EnsureSize(ref byte[] buffer, int size)
{
if (buffer.Length < size)
{
// double buffer to avoid constantly resizing by a few bytes
Array.Resize(ref buffer, Math.Max(size, buffer.Length * 2));
}
}
private void SendHandshakeAndPubKey(OpCodes opcode)
{
using (NetworkWriterPooled writer = NetworkWriterPool.Get())
{
writer.WriteByte((byte)opcode);
if (opcode == OpCodes.HandshakeAck)
{
writer.WriteBytes(_hkdfSalt, 0, HkdfSaltSize);
}
writer.WriteBytes(_credentials.PublicKeySerialized, 0, _credentials.PublicKeySerialized.Length);
_send(writer.ToArraySegment(), Channels.Unreliable);
}
}
private void SendHandshakeFin()
{
using (NetworkWriterPooled writer = NetworkWriterPool.Get())
{
writer.WriteByte((byte)OpCodes.HandshakeFin);
_send(writer.ToArraySegment(), Channels.Unreliable);
}
}
private void CompleteExchange(ArraySegment<byte> remotePubKeyRaw, byte[] salt)
{
AsymmetricKeyParameter remotePubKey;
try
{
remotePubKey = EncryptionCredentials.DeserializePublicKey(remotePubKeyRaw);
}
catch (Exception e)
{
_error(TransportError.Unexpected, $"Failed to deserialize public key of remote. {e.GetType()}: {e.Message}");
return;
}
if (_validateRemoteKey != null)
{
PubKeyInfo info = new PubKeyInfo
{
Fingerprint = EncryptionCredentials.PubKeyFingerprint(remotePubKeyRaw),
Serialized = remotePubKeyRaw,
Key = remotePubKey
};
if (!_validateRemoteKey(info))
{
_error(TransportError.Unexpected, $"Remote public key (fingerprint: {info.Fingerprint}) failed validation. ");
return;
}
}
// Calculate a common symmetric key from our private key and the remotes public key
// This gives us the same key on the other side, with our public key and their remote
// It's like magic, but with math!
ECDHBasicAgreement ecdh = new ECDHBasicAgreement();
ecdh.Init(_credentials.PrivateKey);
byte[] sharedSecret;
try
{
sharedSecret = ecdh.CalculateAgreement(remotePubKey).ToByteArrayUnsigned();
}
catch
(Exception e)
{
_error(TransportError.Unexpected, $"Failed to calculate the ECDH key exchange. {e.GetType()}: {e.Message}");
return;
}
if (salt.Length != HkdfSaltSize)
{
_error(TransportError.Unexpected, $"Salt is expected to be {HkdfSaltSize} bytes long, got {salt.Length}.");
return;
}
Hkdf.Init(new HkdfParameters(sharedSecret, salt, HkdfInfo));
// Allocate a buffer for the output key
byte[] keyRaw = new byte[KeyLength];
// Generate the output keying material
Hkdf.GenerateBytes(keyRaw, 0, keyRaw.Length);
KeyParameter key = new KeyParameter(keyRaw);
// generate a starting nonce
_nonce = GenerateSecureBytes(NonceSize);
// we pass in the nonce array once (as it's stored by reference) so we can cache the AeadParameters instance
// instead of creating a new one each encrypt/decrypt
_cipherParametersEncrypt = new AeadParameters(key, MacSizeBits, _nonce);
_cipherParametersDecrypt = new AeadParameters(key, MacSizeBits, ReceiveNonce);
}
/**
* non-ready connections need to be ticked for resending key data over unreliable
*/
public void TickNonReady(double time)
{
if (IsReady)
{
return;
}
// Timeout reset
if (_handshakeTimeout == 0)
{
_handshakeTimeout = time + DurationTimeout;
}
else if (time > _handshakeTimeout)
{
_error?.Invoke(TransportError.Timeout, $"Timed out during {_state}, this probably just means the other side went away which is fine.");
return;
}
// Timeout reset
if (_nextHandshakeResend < 0)
{
_nextHandshakeResend = time + DurationResend;
return;
}
if (time < _nextHandshakeResend)
{
// Resend isn't due yet
return;
}
_nextHandshakeResend = time + DurationResend;
switch (_state)
{
case State.WaitingHandshake:
if (_sendsFirst)
{
SendHandshakeAndPubKey(OpCodes.HandshakeStart);
}
break;
case State.WaitingHandshakeReply:
if (_sendsFirst)
{
SendHandshakeFin();
}
else
{
SendHandshakeAndPubKey(OpCodes.HandshakeAck);
}
break;
case State.Ready: // IsReady is checked above & early-returned
default:
throw new ArgumentOutOfRangeException();
}
}
}
}