new powertrain смерть чуркам

This commit is contained in:
Valera 2025-06-13 21:16:20 +07:00
parent ba9afba4d1
commit 964b46e1c5
15 changed files with 868 additions and 416 deletions

View File

@ -0,0 +1,49 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public class Clutch : PowertrainComponent
{
[Property] public override float Inertia { get; set; } = 0.002f;
[Property] public float SlipTorque { get; set; } = 1000f;
public float Pressing { get; set; } = 1; // todo
public override float QueryInertia()
{
if ( !HasOutput )
return Inertia;
return Inertia + Output.QueryInertia() * Pressing;
}
public override float QueryAngularVelocity( float angularVelocity )
{
this.angularVelocity = angularVelocity;
if ( !HasOutput )
return angularVelocity;
float outputW = Output.QueryAngularVelocity( angularVelocity ) * Pressing;
float inputW = angularVelocity * (1 - Pressing);
return outputW + inputW;
}
public override float ForwardStep( float torque, float inertia )
{
if ( !HasOutput )
return torque;
Torque = Math.Clamp( torque, -SlipTorque, SlipTorque );
Torque = torque * (1 - (1 - MathF.Pow( Pressing, 0.3f )));
float returnTorque = Output.ForwardStep( Torque, inertia * Pressing + Inertia ) * Pressing;
return Math.Clamp( returnTorque, -SlipTorque, SlipTorque );
}
}

View File

@ -0,0 +1,79 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
[Category( "VeloX/Powertrain/Gearbox" )]
public abstract class BaseDifferential : PowertrainComponent
{
[Property] public float FinalDrive { get; set; } = 3.392f;
[Property] public override float Inertia { get; set; } = 0.01f;
//[Property] public float CoastRamp { get; set; } = 1f;
//[Property] public float PowerRamp { get; set; } = 1f;
//[Property] public float Stiffness { get; set; } = 0.1f;
//[Property] public float SlipTorque { get; set; } = 0f;
//[Property] public float SteerLock { get; set; } = 45f;
/// <summary>
/// The PowertrainComponent this component will output to.
/// </summary>
[Property]
public PowertrainComponent OutputB
{
get => _outputb;
set
{
if ( value == this )
{
_outputb = null;
return;
}
_outputb = value;
if ( _outputb != null )
_outputb.Input = this;
}
}
private PowertrainComponent _outputb;
public override bool HasOutput => Output.IsValid() && OutputB.IsValid();
public override float QueryAngularVelocity( float angularVelocity )
{
this.angularVelocity = angularVelocity;
if ( !HasOutput )
return angularVelocity;
float aW = Output.QueryAngularVelocity( angularVelocity );
float bW = OutputB.QueryAngularVelocity( angularVelocity );
return (aW + bW) * FinalDrive * 0.5f;
}
public abstract void SplitTorque( float aW, float bW, float aI, float bI, out float tqA, out float tqB );
public override float ForwardStep( float torque, float inertia )
{
if ( !HasOutput )
return torque;
float aW = Output.QueryAngularVelocity( angularVelocity );
float bW = OutputB.QueryAngularVelocity( angularVelocity );
float aI = Output.QueryInertia();
float bI = OutputB.QueryInertia();
Torque = torque * FinalDrive;
SplitTorque( aW, bW, aI, bI, out float tqA, out float tqB );
tqA = Output.ForwardStep( tqA, inertia * 0.5f * MathF.Pow( FinalDrive, 2 ) + aI );
tqB = OutputB.ForwardStep( tqB, inertia * 0.5f * MathF.Pow( FinalDrive, 2 ) + bI );
return tqA + tqB;
}
}

View File

@ -0,0 +1,13 @@
using Sandbox;
namespace VeloX.Powertrain;
public class OpenDifferential : BaseDifferential
{
[Property] public float BiasAB { get; set; } = 0.5f;
public override void SplitTorque( float aW, float bW, float aI, float bI, out float tqA, out float tqB )
{
tqA = Torque * (1 - BiasAB);
tqB = Torque * BiasAB;
}
}

View File

@ -0,0 +1,101 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public class Engine : PowertrainComponent
{
[Property, Group( "Settings" )] public float IdleRPM { get; set; } = 900f;
[Property, Group( "Settings" )] public float MaxRPM { get; set; } = 7000f;
[Property, Group( "Settings" )] public override float Inertia { get; set; } = 0.151f;
[Property, Group( "Settings" )] public float StartFriction { get; set; } = 50f;
[Property, Group( "Settings" )] public float FrictionCoeff { get; set; } = 0.02f;
[Property, Group( "Settings" )] public float LimiterDuration { get; set; } = 0.05f;
[Property, Group( "Settings" )] public Curve TorqueMap { get; set; }
[Property, Group( "Settings" )] public EngineStream Stream { get; set; }
[Sync] public float Throttle { get; internal set; }
[Property] public bool IsRedlining => !limiterTimer;
[Property] public float RPMPercent => Math.Clamp( (RPM - IdleRPM) / (MaxRPM - IdleRPM), 0, 1 );
private float masterThrottle;
private TimeUntil limiterTimer;
private float finalTorque;
private EngineStreamPlayer StreamPlayer;
protected override void OnStart()
{
base.OnStart();
StreamPlayer = new( Stream );
}
private float GenerateTorque()
{
float throttle = Throttle;
float rpm = RPM;
float friction = StartFriction - rpm * FrictionCoeff;
float maxInitialTorque = TorqueMap.Evaluate( RPMPercent ) - friction;
float idleFadeStart = Math.Clamp( MathX.Remap( rpm, IdleRPM - 300, IdleRPM, 1, 0 ), 0, 1 );
float idleFadeEnd = Math.Clamp( MathX.Remap( rpm, IdleRPM, IdleRPM + 600, 1, 0 ), 0, 1 );
float additionalEnergySupply = idleFadeEnd * (-friction / maxInitialTorque) + idleFadeStart;
if ( rpm > MaxRPM )
{
throttle = 0;
limiterTimer = LimiterDuration;
}
else if ( !limiterTimer )
throttle = 0;
masterThrottle = Math.Clamp( additionalEnergySupply + throttle, 0, 1 );
float realInitialTorque = maxInitialTorque * masterThrottle;
Torque = realInitialTorque + friction;
return Torque;
}
public override float ForwardStep( float _, float __ )
{
if ( !HasOutput )
{
angularVelocity += GenerateTorque() / Inertia * Time.Delta;
angularVelocity = Math.Max( angularVelocity, 0 );
return 0;
}
float outputInertia = Output.QueryInertia();
float inertiaSum = Inertia + outputInertia;
float outputW = Output.QueryAngularVelocity( angularVelocity );
float targetW = Inertia / inertiaSum * angularVelocity + outputInertia / inertiaSum * outputW;
float generatedTorque = GenerateTorque();
float reactTorque = (targetW - angularVelocity) * Inertia / Time.Delta;
float returnedTorque = Output.ForwardStep( generatedTorque - reactTorque, Inertia );
finalTorque = generatedTorque + reactTorque + returnedTorque;
angularVelocity += finalTorque / inertiaSum * Time.Delta;
angularVelocity = Math.Max( angularVelocity, 0 );
UpdateStream();
return finalTorque;
}
private void UpdateStream()
{
if ( StreamPlayer is null )
return;
StreamPlayer.Throttle = Throttle;
StreamPlayer.RPMPercent = RPMPercent;
StreamPlayer.EngineState = EngineState.Running;
StreamPlayer.IsRedlining = IsRedlining;
StreamPlayer.Update( Time.Delta, WorldPosition );
}
}

View File

@ -0,0 +1,45 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
[Category( "VeloX/Powertrain/Gearbox" )]
public abstract class BaseGearbox : PowertrainComponent
{
[Property] public override float Inertia { get; set; } = 0.01f;
protected float ratio;
public override float QueryInertia()
{
if ( !HasOutput || ratio == 0 )
return Inertia;
return Inertia + Output.QueryInertia() / MathF.Pow( ratio, 2 );
}
public override float QueryAngularVelocity( float angularVelocity )
{
this.angularVelocity = angularVelocity;
if ( !HasOutput || ratio == 0 )
return angularVelocity;
return Output.QueryAngularVelocity( angularVelocity ) * ratio;
}
public override float ForwardStep( float torque, float inertia )
{
Torque = torque * ratio;
if ( !HasOutput )
return torque;
if ( ratio == 0 )
{
Output.ForwardStep( 0, Inertia * 0.5f );
return torque;
}
return Output.ForwardStep( Torque, (inertia + Inertia) * MathF.Pow( ratio, 2 ) ) / ratio;
}
}

View File

@ -0,0 +1,52 @@
using Sandbox;
namespace VeloX.Powertrain;
public class ManualGearbox : BaseGearbox
{
[Property] public float[] Ratios { get; set; } = [3.626f, 2.200f, 1.541f, 1.213f, 1.000f, 0.767f];
[Property] public float Reverse { get; set; } = 3.4f;
[Property, InputAction] public string ForwardAction { get; set; } = "Attack1";
[Property, InputAction] public string BackwardAction { get; set; } = "Attack2";
private int gear;
protected void SetGear( int gear )
{
if ( gear < -1 || gear >= Ratios.Length )
return;
this.gear = gear;
RecalcRatio();
}
private void RecalcRatio()
{
if ( gear == -1 )
ratio = -Reverse;
else if ( gear == 0 )
ratio = 0;
else
ratio = Ratios[gear - 1];
}
public void Shift( int dir )
{
SetGear( gear + dir );
}
private void InputResolve()
{
if ( Sandbox.Input.Pressed( ForwardAction ) )
Shift( 1 );
else if ( Sandbox.Input.Pressed( BackwardAction ) )
Shift( -1 );
}
public override float ForwardStep( float torque, float inertia )
{
InputResolve();
return base.ForwardStep( torque, inertia );
}
}

View File

@ -0,0 +1,29 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public class PowerWheel : PowertrainComponent
{
[Property] public VeloXWheel Wheel { get; set; }
public override float QueryInertia() => Wheel.Inertia;
public override float QueryAngularVelocity( float angularVelocity )
{
return Wheel.AngularVelocity;
}
public override float ForwardStep( float torque, float inertia )
{
Wheel.AutoPhysics = false;
Wheel.Torque = torque;
Wheel.Brake = Vehicle.Brake;
Wheel.DoPhysics( Vehicle );
angularVelocity = Wheel.AngularVelocity;
return Wheel.CounterTorque;
}
}

View File

@ -0,0 +1,100 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public abstract class PowertrainComponent : Component
{
protected override void OnAwake()
{
Vehicle ??= Components.Get<VeloXBase>( FindMode.EverythingInSelfAndAncestors );
}
public const float RAD_TO_RPM = 60f / MathF.Tau;
public const float RPM_TO_RAD = 1 / (60 / MathF.Tau);
public const float UNITS_PER_METER = 39.37f;
public const float UNITS_TO_METERS = 0.01905f;
public const float KG_TO_N = 9.80665f;
public const float KG_TO_KN = 0.00980665f;
[Property] public VeloXBase Vehicle { get; set; }
[Property] public virtual float Inertia { get; set; } = 0.02f;
/// <summary>
/// Input component. Set automatically.
/// </summary>
[Property]
public PowertrainComponent Input
{
get => _input;
set
{
if ( value == null || value == this )
{
_input = null;
return;
}
_input = value;
}
}
private PowertrainComponent _input;
public int InputNameHash;
/// <summary>
/// The PowertrainComponent this component will output to.
/// </summary>
[Property]
public PowertrainComponent Output
{
get => _output;
set
{
if ( value == this )
{
_output = null;
return;
}
_output = value;
if ( _output != null )
_output.Input = this;
}
}
private PowertrainComponent _output;
public float RPM => angularVelocity * RAD_TO_RPM;
protected float angularVelocity;
protected float Torque;
public virtual bool HasOutput => Output.IsValid();
public virtual float QueryInertia()
{
if ( !HasOutput )
return Inertia;
return Inertia + Output.QueryInertia();
}
public virtual float QueryAngularVelocity( float angularVelocity )
{
if ( !HasOutput )
return angularVelocity;
return Output.QueryAngularVelocity( angularVelocity );
}
public virtual float ForwardStep( float torque, float inertia )
{
if ( !HasOutput )
return Torque;
return Output.ForwardStep( Torque, inertia + Inertia );
}
}

View File

@ -1,6 +1,4 @@
using Sandbox; namespace VeloX;
namespace VeloX;
public abstract partial class VeloXBase public abstract partial class VeloXBase
{ {
@ -17,14 +15,9 @@ public abstract partial class VeloXBase
angForce.y = angVel.y * drag.y * mass; angForce.y = angVel.y * drag.y * mass;
angForce.z = angVel.z * drag.z * mass; angForce.z = angVel.z * drag.z * mass;
if ( Wheels.Count > 0 ) if ( Wheels.Count > 0 )
{
var dt = Time.Delta;
foreach ( var v in Wheels ) foreach ( var v in Wheels )
v.DoPhysics( this, in dt ); if ( v.AutoPhysics ) v.DoPhysics( this );
}
Body.ApplyTorque( angForce ); Body.ApplyTorque( angForce );
} }

View File

@ -4,7 +4,7 @@ namespace VeloX;
[GameResource( "Wheel Friction", "whfric", "Wheel Friction", Category = "VeloX", Icon = "radio_button_checked" )] [GameResource( "Wheel Friction", "whfric", "Wheel Friction", Category = "VeloX", Icon = "radio_button_checked" )]
public class WheelFriction : GameResource public class TirePreset : GameResource
{ {
public FrictionPreset Longitudinal { get; set; } public FrictionPreset Longitudinal { get; set; }
public FrictionPreset Lateral { get; set; } public FrictionPreset Lateral { get; set; }

View File

@ -1,11 +1,6 @@
using Sandbox; using Sandbox;
using Sandbox.UI;
using System; using System;
using System.Buffers.Text;
using System.Numerics;
using System.Runtime.Intrinsics.Arm;
using System.Text.RegularExpressions; using System.Text.RegularExpressions;
using System.Threading;
namespace VeloX; namespace VeloX;
@ -23,13 +18,10 @@ public partial class VeloXWheel : Component
public FrictionPreset LateralFrictionPreset => WheelFriction.Lateral; public FrictionPreset LateralFrictionPreset => WheelFriction.Lateral;
public FrictionPreset AligningFrictionPreset => WheelFriction.Aligning; public FrictionPreset AligningFrictionPreset => WheelFriction.Aligning;
[Property] public WheelFriction WheelFriction { get; set; } [Property] public TirePreset WheelFriction { get; set; }
[Property] public float Width { get; set; } = 6; [Property] public float Width { get; set; } = 6;
[Sync] public float SideSlip { get; private set; } [Sync] public float SideSlip { get; private set; }
[Sync] public float ForwardSlip { get; private set; } [Sync] public float ForwardSlip { get; private set; }
[Sync, Range( 0, 1 )] public float BrakePower { get; set; }
[Sync] public float Torque { get; set; } [Sync] public float Torque { get; set; }
[Sync, Range( 0, 1 )] public float Brake { get; set; } [Sync, Range( 0, 1 )] public float Brake { get; set; }
[Property] float BrakePowerMax { get; set; } = 3000; [Property] float BrakePowerMax { get; set; } = 3000;
@ -43,9 +35,13 @@ public partial class VeloXWheel : Component
[Property, Group( "Suspension" )] float SpringStrength { get; set; } = 800; [Property, Group( "Suspension" )] float SpringStrength { get; set; } = 800;
[Property, Group( "Suspension" )] float SpringDamper { get; set; } = 3000; [Property, Group( "Suspension" )] float SpringDamper { get; set; } = 3000;
[Property] public bool AutoPhysics { get; set; } = true;
public float Spin { get; private set; } public float Spin { get; private set; }
public float RPM { get => angularVelocity * 60f / MathF.Tau; set => angularVelocity = value / (60 / MathF.Tau); } public float RPM { get => angularVelocity * 60f / MathF.Tau; set => angularVelocity = value / (60 / MathF.Tau); }
public float AngularVelocity => angularVelocity;
internal float DistributionFactor { get; set; } internal float DistributionFactor { get; set; }
private Vector3 StartPos { get; set; } private Vector3 StartPos { get; set; }
@ -69,9 +65,11 @@ public partial class VeloXWheel : Component
private Friction forwardFriction; private Friction forwardFriction;
private Friction sideFriction; private Friction sideFriction;
private Vector3 force; private Vector3 force;
public float CounterTorque { get; private set; }
private float BaseInertia => 0.5f * Mass * MathF.Pow( Radius.InchToMeter(), 2 ); private float BaseInertia => 0.5f * Mass * MathF.Pow( Radius.InchToMeter(), 2 );
private float Inertia => BaseInertia; public float Inertia => BaseInertia;
protected override void OnAwake() protected override void OnAwake()
{ {
@ -118,7 +116,7 @@ public partial class VeloXWheel : Component
} }
private (float, float, float, float) StepLongitudinal( float Vx, float Lc, float kFx, float kSx, float dt ) private (float, float, float, float) StepLongitudinal( float Vx, float Lc, float kFx, float kSx)
{ {
float Tm = Torque; float Tm = Torque;
float Tb = Brake * BrakePowerMax + RollingResistance; float Tb = Brake * BrakePowerMax + RollingResistance;
@ -138,35 +136,35 @@ public partial class VeloXWheel : Component
Sx = Math.Clamp( Sx * kSx, -1, 1 ); Sx = Math.Clamp( Sx * kSx, -1, 1 );
W += Tm / I * dt; W += Tm / I * Time.Delta;
Tb *= W > 0 ? -1 : 1; Tb *= W > 0 ? -1 : 1;
float TbCap = MathF.Abs( W ) * I / dt; float TbCap = MathF.Abs( W ) * I / Time.Delta;
float Tbr = MathF.Abs( Tb ) - MathF.Abs( TbCap ); float Tbr = MathF.Abs( Tb ) - MathF.Abs( TbCap );
Tbr = MathF.Max( Tbr, 0 ); Tbr = MathF.Max( Tbr, 0 );
Tb = Math.Clamp( Tb, -TbCap, TbCap ); Tb = Math.Clamp( Tb, -TbCap, TbCap );
W += Tb / I * dt; W += Tb / I * Time.Delta;
float maxTorque = LongitudinalFrictionPreset.Evaluate( Sx ) * Lc * kFx; float maxTorque = LongitudinalFrictionPreset.Evaluate( Sx ) * Lc * kFx;
float errorTorque = (W - Vx / R) * I / dt; float errorTorque = (W - Vx / R) * I / Time.Delta;
float surfaceTorque = MathX.Clamp( errorTorque, -maxTorque, maxTorque ); float surfaceTorque = MathX.Clamp( errorTorque, -maxTorque, maxTorque );
W -= surfaceTorque / I * dt; W -= surfaceTorque / I * Time.Delta;
float Fx = surfaceTorque / R; float Fx = surfaceTorque / R;
Tbr *= W > 0 ? -1 : 1; Tbr *= W > 0 ? -1 : 1;
float TbCap2 = MathF.Abs( W ) * I / dt; float TbCap2 = MathF.Abs( W ) * I / Time.Delta;
float Tb2 = Math.Clamp( Tbr, -TbCap2, TbCap2 ); float Tb2 = Math.Clamp( Tbr, -TbCap2, TbCap2 );
W += Tb2 / I * dt; W += Tb2 / I * Time.Delta;
float deltaOmegaTorque = (W - Winit) * I / dt; float deltaOmegaTorque = (W - Winit) * I / Time.Delta;
float Tcnt = -surfaceTorque + Tb + Tb2 - deltaOmegaTorque; float Tcnt = -surfaceTorque + Tb + Tb2 - deltaOmegaTorque;
if ( Lc < 0.001f ) if ( Lc < 0.001f )
@ -175,7 +173,7 @@ public partial class VeloXWheel : Component
return (W, Sx, Fx, Tcnt); return (W, Sx, Fx, Tcnt);
} }
private (float, float) StepLateral( float Vx, float Vy, float Lc, float kFy, float kSy, float dt ) private (float, float) StepLateral( float Vx, float Vy, float Lc, float kFy, float kSy)
{ {
float VxAbs = MathF.Abs( Vx ); float VxAbs = MathF.Abs( Vx );
float Sy; float Sy;
@ -183,7 +181,7 @@ public partial class VeloXWheel : Component
if ( VxAbs > 0.1f ) if ( VxAbs > 0.1f )
Sy = MathF.Atan( Vy / VxAbs ).RadianToDegree() * 0.01111f; Sy = MathF.Atan( Vy / VxAbs ).RadianToDegree() * 0.01111f;
else else
Sy = Vy * (0.003f / dt); Sy = Vy * (0.003f / Time.Delta);
Sy *= kSy * 0.95f; Sy *= kSy * 0.95f;
@ -224,7 +222,7 @@ public partial class VeloXWheel : Component
private static float GetLongitudinalLoadCoefficient( float load ) => 11000 * (1 - MathF.Exp( -0.00014f * load )); private static float GetLongitudinalLoadCoefficient( float load ) => 11000 * (1 - MathF.Exp( -0.00014f * load ));
private static float GetLateralLoadCoefficient( float load ) => 18000 * (1 - MathF.Exp( -0.0001f * load )); private static float GetLateralLoadCoefficient( float load ) => 18000 * (1 - MathF.Exp( -0.0001f * load ));
public void DoPhysics( VeloXBase vehicle, in float dt ) public void DoPhysics( VeloXBase vehicle )
{ {
var pos = vehicle.WorldTransform.PointToWorld( StartPos ); var pos = vehicle.WorldTransform.PointToWorld( StartPos );
@ -274,7 +272,7 @@ public partial class VeloXWheel : Component
var springForce = (offset * SpringStrength); var springForce = (offset * SpringStrength);
var damperForce = (lastSpringOffset - offset) * SpringDamper; var damperForce = (lastSpringOffset - offset) * SpringDamper;
lastSpringOffset = offset; lastSpringOffset = offset;
force = (springForce - damperForce) * MathF.Max( 0, up.Dot( normal ) ) * normal / dt; force = (springForce - damperForce) * MathF.Max( 0, up.Dot( normal ) ) * normal / Time.Delta;
// Vector3.CalculateVelocityOffset is broken (need fix) // Vector3.CalculateVelocityOffset is broken (need fix)
//var velU = normal.Dot( vel ).MeterToInch(); //var velU = normal.Dot( vel ).MeterToInch();
@ -301,13 +299,11 @@ public partial class VeloXWheel : Component
forwardSpeed = vel.Dot( forward ); forwardSpeed = vel.Dot( forward );
sideSpeed = vel.Dot( right ); sideSpeed = vel.Dot( right );
} }
(float W, float Sx, float Fx, float Tcnt) = StepLongitudinal(
(float W, float Sx, float Fx, float _) = StepLongitudinal(
forwardSpeed, forwardSpeed,
longitudinalLoadCoefficient, longitudinalLoadCoefficient,
0.95f, 0.95f,
0.9f, 0.9f
dt
); );
(float Sy, float Fy) = StepLateral( (float Sy, float Fy) = StepLateral(
@ -315,12 +311,13 @@ public partial class VeloXWheel : Component
sideSpeed, sideSpeed,
lateralLoadCoefficient, lateralLoadCoefficient,
0.95f, 0.95f,
0.9f, 0.9f
dt
); );
SlipCircle( Sx, Sy, Fx, ref Fy ); SlipCircle( Sx, Sy, Fx, ref Fy );
angularVelocity = W; angularVelocity = W;
CounterTorque = Tcnt;
forwardFriction = new Friction() forwardFriction = new Friction()
{ {

View File

@ -1,354 +1,365 @@
using Sandbox; using Sandbox;
using System; using System;
using System.Collections.Generic; using System.Collections.Generic;
using VeloX.Powertrain;
namespace VeloX; namespace VeloX;
public partial class VeloXCar public partial class VeloXCar
{ {
[Property, Feature( "Engine" ), Sync] public EngineState EngineState { get; set; }
[Property, Feature( "Engine" )] public EngineStream Stream { get; set; }
public EngineStreamPlayer StreamPlayer { get; set; }
[Property, Feature( "Engine" )] public float MinRPM { get; set; } = 800; [Property, Feature( "Engine" )] Engine Engine { get; set; }
[Property, Feature( "Engine" )] public float MaxRPM { get; set; } = 7000;
[Property, Feature( "Engine" ), Range( -1, 1 )]
public float PowerDistribution
{
get => powerDistribution; set
{
powerDistribution = value;
UpdatePowerDistribution();
}
}
[Property, Feature( "Engine" )] public float FlyWheelMass { get; set; } = 80f;
[Property, Feature( "Engine" )] public float FlyWheelRadius { get; set; } = 0.5f;
[Property, Feature( "Engine" )] public float FlywheelFriction { get; set; } = -6000;
[Property, Feature( "Engine" )] public float FlywheelTorque { get; set; } = 20000;
[Property, Feature( "Engine" )] public float EngineBrakeTorque { get; set; } = 2000;
[Property, Feature( "Engine" )]
public Dictionary<int, float> Gears { get; set; } = new()
{
[-1] = 2.5f,
[0] = 0f,
[1] = 2.8f,
[2] = 1.7f,
[3] = 1.2f,
[4] = 0.9f,
[5] = 0.75f,
[6] = 0.7f
};
[Property, Feature( "Engine" )] public float DifferentialRatio { get; set; } = 1f;
[Property, Feature( "Engine" ), Range( 0, 1 )] public float TransmissionEfficiency { get; set; } = 0.8f;
[Property, Feature( "Engine" )] private float MinRPMTorque { get; set; } = 5000f;
[Property, Feature( "Engine" )] private float MaxRPMTorque { get; set; } = 8000f;
[Sync] public int Gear { get; set; } = 0;
[Sync] public float Clutch { get; set; } = 1;
[Sync( SyncFlags.Interpolate )] public float EngineRPM { get; set; }
public float RPMPercent => (EngineRPM - MinRPM) / MaxRPM;
private const float TAU = MathF.Tau;
private int MinGear { get; set; }
private int MaxGear { get; set; }
[Sync] public bool IsRedlining { get; private set; }
private float flywheelVelocity;
private TimeUntil switchCD = 0;
private float groundedCount;
private float burnout;
private float frontBrake;
private float rearBrake;
private float availableFrontTorque;
private float availableRearTorque;
private float avgSideSlip;
private float avgPoweredRPM;
private float avgForwardSlip;
private float inputThrottle, inputBrake;
private bool inputHandbrake;
private float transmissionRPM;
private float powerDistribution;
public float FlywheelRPM
{
get => flywheelVelocity * 60 / TAU;
set
{
flywheelVelocity = value * TAU / 60; EngineRPM = value;
}
}
private void UpdateGearList()
{
int minGear = 0;
int maxGear = 0;
foreach ( var (gear, ratio) in Gears )
{
if ( gear < minGear )
minGear = gear;
if ( gear > maxGear )
maxGear = gear;
if ( minGear != 0 || maxGear != 0 )
{
SwitchGear( 0, false );
}
}
MinGear = minGear;
MaxGear = maxGear;
}
public void SwitchGear( int index, bool cooldown = true )
{
if ( Gear == index ) return;
index = Math.Clamp( index, MinGear, MaxGear );
if ( index == 0 || !cooldown )
switchCD = 0;
else
switchCD = 0.3f;
Clutch = 1;
Gear = index;
}
public float TransmissionToEngineRPM( int gear ) => avgPoweredRPM * Gears[gear] * DifferentialRatio * 60 / TAU;
public float GetTransmissionMaxRPM( int gear ) => FlywheelRPM / Gears[gear] / DifferentialRatio;
private void UpdatePowerDistribution()
{
if ( Wheels is null ) return;
int frontCount = 0, rearCount = 0;
foreach ( var wheel in Wheels )
{
if ( wheel.IsFront )
frontCount++;
else
rearCount++;
}
float frontDistribution = 0.5f + PowerDistribution * 0.5f;
float rearDistribution = 1 - frontDistribution;
frontDistribution /= frontCount;
rearDistribution /= rearCount;
foreach ( var wheel in Wheels )
if ( wheel.IsFront )
wheel.DistributionFactor = frontDistribution;
else
wheel.DistributionFactor = rearDistribution;
}
private void EngineAccelerate( float torque, float dt )
{
var inertia = 0.5f * FlyWheelMass * FlyWheelRadius * FlyWheelRadius;
var angularAcceleration = torque / inertia;
flywheelVelocity += angularAcceleration * dt;
}
private float GetTransmissionTorque( int gear, float minTorque, float maxTorque )
{
var torque = FlywheelRPM.Remap( MinRPM, MaxRPM, minTorque, maxTorque, true );
torque *= (1 - Clutch);
torque = torque * Gears[gear] * DifferentialRatio * TransmissionEfficiency;
return gear == -1 ? -torque : torque;
}
private void AutoGearSwitch()
{
if ( ForwardSpeed < 100 && Input.Down( "Backward" ) )
{
SwitchGear( -1, false );
return;
}
var currentGear = Gear;
if ( currentGear < 0 && ForwardSpeed < -100 )
return;
if ( Math.Abs( avgForwardSlip ) > 10 )
return;
var gear = Math.Clamp( currentGear, 1, MaxGear );
float minRPM = MinRPM, maxRPM = MaxRPM;
maxRPM *= 0.98f;
float gearRPM;
for ( int i = 1; i <= MaxGear; i++ )
{
gearRPM = TransmissionToEngineRPM( i );
if ( (i == 1 && gearRPM < minRPM) || (gearRPM > minRPM && gearRPM < maxRPM) )
{
gear = i;
break;
}
}
var threshold = minRPM + (maxRPM - minRPM) * (0.5 - Throttle * 0.3);
if ( gear < currentGear && gear > currentGear - 2 && EngineRPM > threshold )
return;
SwitchGear( gear );
}
private float EngineClutch( float dt )
{
if ( !switchCD )
{
inputThrottle = 0;
return 0;
}
if ( inputHandbrake )
return 1;
var absForwardSpeed = Math.Abs( ForwardSpeed );
if ( groundedCount < 1 && absForwardSpeed > 30 )
return 1;
if ( ForwardSpeed < -50 && inputBrake > 0 && Gear < 0 )
return 1;
if ( absForwardSpeed > 200 )
return 0;
return inputThrottle > 0.1f ? 0 : 1;
}
private void EngineThink( float dt ) private void EngineThink( float dt )
{ {
inputThrottle = Input.Down( "Forward" ) ? 1 : 0; Engine.Throttle = Input.Down( "Forward" ) ? 1 : 0;
inputBrake = Input.Down( "Backward" ) ? 1 : 0; Engine.ForwardStep( 0, 0 );
inputHandbrake = Input.Down( "Jump" );
if ( burnout > 0 )
{
SwitchGear( 1, false );
if ( inputThrottle < 0.1f || inputBrake < 0.1f )
burnout = 0;
}
else
AutoGearSwitch();
if ( Gear < 0 )
(inputBrake, inputThrottle) = (inputThrottle, inputBrake);
var rpm = FlywheelRPM;
var clutch = EngineClutch( dt );
if ( inputThrottle > 0.1 && inputBrake > 0.1 && Math.Abs( ForwardSpeed ) < 50 )
{
burnout = MathX.Approach( burnout, 1, dt * 2 );
Clutch = 0;
}
else if ( inputHandbrake )
{
frontBrake = 0f;
rearBrake = 0.5f;
Clutch = 1;
clutch = 1;
}
else
{
if ( (Gear == -1 || Gear == 1) && inputThrottle < 0.05f && inputBrake < 0.1f && groundedCount > 1 && rpm < MinRPM * 1.2f )
inputBrake = 0.2f;
frontBrake = inputBrake * 0.5f;
rearBrake = inputBrake * 0.5f;
} }
clutch = MathX.Approach( Clutch, clutch, dt * ((Gear < 2 && inputThrottle > 0.1f) ? 6 : 2) );
Clutch = clutch; //[Property, Feature( "Engine" ), Sync] public EngineState EngineState { get; set; }
//[Property, Feature( "Engine" )] public EngineStream Stream { get; set; }
//public EngineStreamPlayer StreamPlayer { get; set; }
var isRedlining = false; //[Property, Feature( "Engine" )] public float MinRPM { get; set; } = 800;
transmissionRPM = 0; //[Property, Feature( "Engine" )] public float MaxRPM { get; set; } = 7000;
//[Property, Feature( "Engine" ), Range( -1, 1 )]
//public float PowerDistribution
//{
// get => powerDistribution; set
// {
// powerDistribution = value;
// UpdatePowerDistribution();
// }
//}
//[Property, Feature( "Engine" )] public float FlyWheelMass { get; set; } = 80f;
//[Property, Feature( "Engine" )] public float FlyWheelRadius { get; set; } = 0.5f;
//[Property, Feature( "Engine" )] public float FlywheelFriction { get; set; } = -6000;
//[Property, Feature( "Engine" )] public float FlywheelTorque { get; set; } = 20000;
//[Property, Feature( "Engine" )] public float EngineBrakeTorque { get; set; } = 2000;
//[Property, Feature( "Engine" )]
//public Dictionary<int, float> Gears { get; set; } = new()
//{
// [-1] = 2.5f,
// [0] = 0f,
// [1] = 2.8f,
// [2] = 1.7f,
// [3] = 1.2f,
// [4] = 0.9f,
// [5] = 0.75f,
// [6] = 0.7f
//};
//[Property, Feature( "Engine" )] public float DifferentialRatio { get; set; } = 1f;
//[Property, Feature( "Engine" ), Range( 0, 1 )] public float TransmissionEfficiency { get; set; } = 0.8f;
//[Property, Feature( "Engine" )] private float MinRPMTorque { get; set; } = 5000f;
//[Property, Feature( "Engine" )] private float MaxRPMTorque { get; set; } = 8000f;
//[Sync] public int Gear { get; set; } = 0;
//[Sync] public float Clutch { get; set; } = 1;
//[Sync( SyncFlags.Interpolate )] public float EngineRPM { get; set; }
//public float RPMPercent => (EngineRPM - MinRPM) / MaxRPM;
if ( Gear != 0 ) //private const float TAU = MathF.Tau;
{
transmissionRPM = TransmissionToEngineRPM( Gear );
transmissionRPM = Gear < 0 ? -transmissionRPM : transmissionRPM;
rpm = (rpm * clutch) + (MathF.Max( 0, transmissionRPM ) * (1 - clutch));
}
var throttle = Throttle;
var gearTorque = GetTransmissionTorque( Gear, MinRPMTorque, MaxRPMTorque ); //private int MinGear { get; set; }
//private int MaxGear { get; set; }
var availableTorque = gearTorque * throttle; //[Sync] public bool IsRedlining { get; private set; }
if ( transmissionRPM < 0 ) //private float flywheelVelocity;
{ //private TimeUntil switchCD = 0;
availableTorque += gearTorque * 2; //private float groundedCount;
} //private float burnout;
else
{
var engineBrakeTorque = GetTransmissionTorque( Gear, EngineBrakeTorque, EngineBrakeTorque );
availableTorque -= engineBrakeTorque * (1 - throttle) * 0.5f; //private float frontBrake;
} //private float rearBrake;
var maxRPM = MaxRPM; //private float availableFrontTorque;
//private float availableRearTorque;
if ( rpm < MinRPM ) //private float avgSideSlip;
{ //private float avgPoweredRPM;
rpm = MinRPM; //private float avgForwardSlip;
}
else if ( rpm > maxRPM )
{
if ( rpm > maxRPM * 1.2f ) //private float inputThrottle, inputBrake;
availableTorque = 0; //private bool inputHandbrake;
//private float transmissionRPM;
//private float powerDistribution;
rpm = maxRPM; //public float FlywheelRPM
//{
// get => flywheelVelocity * 60 / TAU;
// set
// {
// flywheelVelocity = value * TAU / 60; EngineRPM = value;
// }
//}
//private void UpdateGearList()
//{
// int minGear = 0;
// int maxGear = 0;
if ( Gear != MaxGear || groundedCount < Wheels.Count ) // foreach ( var (gear, ratio) in Gears )
isRedlining = true; // {
}
FlywheelRPM = Math.Clamp( rpm, 0, maxRPM ); // if ( gear < minGear )
// minGear = gear;
if ( burnout > 0 ) // if ( gear > maxGear )
availableTorque += availableTorque * burnout * 0.1f; // maxGear = gear;
var front = 0.5f + PowerDistribution * 0.5f; // if ( minGear != 0 || maxGear != 0 )
var rear = 1 - front; // {
// SwitchGear( 0, false );
// }
// }
availableFrontTorque = availableTorque * front; // MinGear = minGear;
availableRearTorque = availableTorque * rear; // MaxGear = maxGear;
throttle = MathX.Approach( throttle, inputThrottle, dt * 4 ); //}
EngineAccelerate( FlywheelFriction + FlywheelTorque * throttle, dt ); //public void SwitchGear( int index, bool cooldown = true )
//{
// if ( Gear == index ) return;
// index = Math.Clamp( index, MinGear, MaxGear );
Throttle = throttle; // if ( index == 0 || !cooldown )
// switchCD = 0;
// else
// switchCD = 0.3f;
// Clutch = 1;
// Gear = index;
//}
IsRedlining = (isRedlining && inputThrottle > 0); //public float TransmissionToEngineRPM( int gear ) => avgPoweredRPM * Gears[gear] * DifferentialRatio * 60 / TAU;
} //public float GetTransmissionMaxRPM( int gear ) => FlywheelRPM / Gears[gear] / DifferentialRatio;
//private void UpdatePowerDistribution()
//{
// if ( Wheels is null ) return;
// int frontCount = 0, rearCount = 0;
// foreach ( var wheel in Wheels )
// {
// if ( wheel.IsFront )
// frontCount++;
// else
// rearCount++;
// }
// float frontDistribution = 0.5f + PowerDistribution * 0.5f;
// float rearDistribution = 1 - frontDistribution;
// frontDistribution /= frontCount;
// rearDistribution /= rearCount;
// foreach ( var wheel in Wheels )
// if ( wheel.IsFront )
// wheel.DistributionFactor = frontDistribution;
// else
// wheel.DistributionFactor = rearDistribution;
//}
//private void EngineAccelerate( float torque, float dt )
//{
// var inertia = 0.5f * FlyWheelMass * FlyWheelRadius * FlyWheelRadius;
// var angularAcceleration = torque / inertia;
// flywheelVelocity += angularAcceleration * dt;
//}
//private float GetTransmissionTorque( int gear, float minTorque, float maxTorque )
//{
// var torque = FlywheelRPM.Remap( MinRPM, MaxRPM, minTorque, maxTorque, true );
// torque *= (1 - Clutch);
// torque = torque * Gears[gear] * DifferentialRatio * TransmissionEfficiency;
// return gear == -1 ? -torque : torque;
//}
//private void AutoGearSwitch()
//{
// if ( ForwardSpeed < 100 && Input.Down( "Backward" ) )
// {
// SwitchGear( -1, false );
// return;
// }
// var currentGear = Gear;
// if ( currentGear < 0 && ForwardSpeed < -100 )
// return;
// if ( Math.Abs( avgForwardSlip ) > 10 )
// return;
// var gear = Math.Clamp( currentGear, 1, MaxGear );
// float minRPM = MinRPM, maxRPM = MaxRPM;
// maxRPM *= 0.98f;
// float gearRPM;
// for ( int i = 1; i <= MaxGear; i++ )
// {
// gearRPM = TransmissionToEngineRPM( i );
// if ( (i == 1 && gearRPM < minRPM) || (gearRPM > minRPM && gearRPM < maxRPM) )
// {
// gear = i;
// break;
// }
// }
// var threshold = minRPM + (maxRPM - minRPM) * (0.5 - Throttle * 0.3);
// if ( gear < currentGear && gear > currentGear - 2 && EngineRPM > threshold )
// return;
// SwitchGear( gear );
//}
//private float EngineClutch( float dt )
//{
// if ( !switchCD )
// {
// inputThrottle = 0;
// return 0;
// }
// if ( inputHandbrake )
// return 1;
// var absForwardSpeed = Math.Abs( ForwardSpeed );
// if ( groundedCount < 1 && absForwardSpeed > 30 )
// return 1;
// if ( ForwardSpeed < -50 && inputBrake > 0 && Gear < 0 )
// return 1;
// if ( absForwardSpeed > 200 )
// return 0;
// return inputThrottle > 0.1f ? 0 : 1;
//}
//private void EngineThink( float dt )
//{
// inputThrottle = Input.Down( "Forward" ) ? 1 : 0;
// inputBrake = Input.Down( "Backward" ) ? 1 : 0;
// inputHandbrake = Input.Down( "Jump" );
// if ( burnout > 0 )
// {
// SwitchGear( 1, false );
// if ( inputThrottle < 0.1f || inputBrake < 0.1f )
// burnout = 0;
// }
// else
// AutoGearSwitch();
// if ( Gear < 0 )
// (inputBrake, inputThrottle) = (inputThrottle, inputBrake);
// var rpm = FlywheelRPM;
// var clutch = EngineClutch( dt );
// if ( inputThrottle > 0.1 && inputBrake > 0.1 && Math.Abs( ForwardSpeed ) < 50 )
// {
// burnout = MathX.Approach( burnout, 1, dt * 2 );
// Clutch = 0;
// }
// else if ( inputHandbrake )
// {
// frontBrake = 0f;
// rearBrake = 0.5f;
// Clutch = 1;
// clutch = 1;
// }
// else
// {
// if ( (Gear == -1 || Gear == 1) && inputThrottle < 0.05f && inputBrake < 0.1f && groundedCount > 1 && rpm < MinRPM * 1.2f )
// inputBrake = 0.2f;
// frontBrake = inputBrake * 0.5f;
// rearBrake = inputBrake * 0.5f;
// }
// clutch = MathX.Approach( Clutch, clutch, dt * ((Gear < 2 && inputThrottle > 0.1f) ? 6 : 2) );
// Clutch = clutch;
// var isRedlining = false;
// transmissionRPM = 0;
// if ( Gear != 0 )
// {
// transmissionRPM = TransmissionToEngineRPM( Gear );
// transmissionRPM = Gear < 0 ? -transmissionRPM : transmissionRPM;
// rpm = (rpm * clutch) + (MathF.Max( 0, transmissionRPM ) * (1 - clutch));
// }
// var throttle = Throttle;
// var gearTorque = GetTransmissionTorque( Gear, MinRPMTorque, MaxRPMTorque );
// var availableTorque = gearTorque * throttle;
// if ( transmissionRPM < 0 )
// {
// availableTorque += gearTorque * 2;
// }
// else
// {
// var engineBrakeTorque = GetTransmissionTorque( Gear, EngineBrakeTorque, EngineBrakeTorque );
// availableTorque -= engineBrakeTorque * (1 - throttle) * 0.5f;
// }
// var maxRPM = MaxRPM;
// if ( rpm < MinRPM )
// {
// rpm = MinRPM;
// }
// else if ( rpm > maxRPM )
// {
// if ( rpm > maxRPM * 1.2f )
// availableTorque = 0;
// rpm = maxRPM;
// if ( Gear != MaxGear || groundedCount < Wheels.Count )
// isRedlining = true;
// }
// FlywheelRPM = Math.Clamp( rpm, 0, maxRPM );
// if ( burnout > 0 )
// availableTorque += availableTorque * burnout * 0.1f;
// var front = 0.5f + PowerDistribution * 0.5f;
// var rear = 1 - front;
// availableFrontTorque = availableTorque * front;
// availableRearTorque = availableTorque * rear;
// throttle = MathX.Approach( throttle, inputThrottle, dt * 4 );
// EngineAccelerate( FlywheelFriction + FlywheelTorque * throttle, dt );
// Throttle = throttle;
// IsRedlining = (isRedlining && inputThrottle > 0);
//}
} }

View File

@ -22,7 +22,7 @@ public partial class VeloXCar
var inputSteer = Input.AnalogMove.y; var inputSteer = Input.AnalogMove.y;
var absInputSteer = Math.Abs( inputSteer ); var absInputSteer = Math.Abs( inputSteer );
var sideSlip = Math.Clamp( avgSideSlip, -1, 1 ); var sideSlip = Math.Clamp( 0, -1, 1 );
var steerConeFactor = Math.Clamp( TotalSpeed / SteerConeMaxSpeed, 0, 1 ); var steerConeFactor = Math.Clamp( TotalSpeed / SteerConeMaxSpeed, 0, 1 );
var steerCone = 1 - steerConeFactor * (1 - SteerConeMaxAngle); var steerCone = 1 - steerConeFactor * (1 - SteerConeMaxAngle);

View File

@ -2,17 +2,11 @@
public partial class VeloXCar public partial class VeloXCar
{ {
private float avgSideSlip;
private float avgPoweredRPM;
private float avgForwardSlip;
private void WheelThink( in float dt ) private void WheelThink( in float dt )
{ {
var maxRPM = GetTransmissionMaxRPM( Gear );
var frontTorque = availableFrontTorque;
var rearTorque = availableRearTorque;
groundedCount = 0;
float avgRPM = 0, totalSideSlip = 0, totalForwardSlip = 0; float avgRPM = 0, totalSideSlip = 0, totalForwardSlip = 0;
foreach ( var w in Wheels ) foreach ( var w in Wheels )
@ -24,20 +18,8 @@ public partial class VeloXCar
var rpm = w.RPM; var rpm = w.RPM;
avgRPM += rpm * w.DistributionFactor; avgRPM += rpm * w.DistributionFactor;
w.Torque = w.DistributionFactor * (w.IsFront ? frontTorque : rearTorque);
w.Brake = w.IsFront ? frontBrake : rearBrake;
if ( inputHandbrake && !w.IsFront )
w.RPM = 0;
if ( rpm > maxRPM )
w.RPM = maxRPM;
if ( w.IsOnGround )
groundedCount++;
} }
avgPoweredRPM = avgRPM; avgPoweredRPM = avgRPM;
avgSideSlip = totalSideSlip / Wheels.Count; avgSideSlip = totalSideSlip / Wheels.Count;
avgForwardSlip = totalForwardSlip / Wheels.Count; avgForwardSlip = totalForwardSlip / Wheels.Count;

View File

@ -10,27 +10,27 @@ public partial class VeloXCar : VeloXBase
protected override void OnStart() protected override void OnStart()
{ {
base.OnStart(); base.OnStart();
StreamPlayer = new( Stream ); //StreamPlayer = new( Stream );
if ( IsDriver ) //if ( IsDriver )
{ //{
UpdateGearList(); // UpdateGearList();
UpdatePowerDistribution(); // UpdatePowerDistribution();
} //}
} }
protected override void OnUpdate() protected override void OnUpdate()
{ {
base.OnUpdate(); base.OnUpdate();
if ( StreamPlayer is not null ) //if ( StreamPlayer is not null )
{ //{
StreamPlayer.Throttle = Throttle; // StreamPlayer.Throttle = Throttle;
StreamPlayer.RPMPercent = RPMPercent; // StreamPlayer.RPMPercent = RPMPercent;
StreamPlayer.EngineState = EngineState; // StreamPlayer.EngineState = EngineState;
StreamPlayer.IsRedlining = IsRedlining; // StreamPlayer.IsRedlining = IsRedlining;
StreamPlayer.Update( Time.Delta, WorldPosition ); // StreamPlayer.Update( Time.Delta, WorldPosition );
} //}
} }
protected override void OnFixedUpdate() protected override void OnFixedUpdate()
@ -40,9 +40,10 @@ public partial class VeloXCar : VeloXBase
base.OnFixedUpdate(); base.OnFixedUpdate();
Brake = Math.Clamp( frontBrake + rearBrake + (Input.Down( "Jump" ) ? 1 : 0), 0, 1 ); Brake = Math.Clamp( (Input.Down( "Jump" ) ? 1 : 0), 0, 1 );
var dt = Time.Delta; var dt = Time.Delta;
EngineThink( dt ); EngineThink( dt );
WheelThink( dt ); WheelThink( dt );
UpdateSteering( dt ); UpdateSteering( dt );