using Sandbox;
using System;
using System.Numerics;
namespace VeloX;
public static class PhysicsExtensions
{
public static Vector3 Transform( this Vector3 value, Quaternion rotation )
{
float x2 = rotation.X + rotation.X;
float y2 = rotation.Y + rotation.Y;
float z2 = rotation.Z + rotation.Z;
float wx2 = rotation.W * x2;
float wy2 = rotation.W * y2;
float wz2 = rotation.W * z2;
float xx2 = rotation.X * x2;
float xy2 = rotation.X * y2;
float xz2 = rotation.X * z2;
float yy2 = rotation.Y * y2;
float yz2 = rotation.Y * z2;
float zz2 = rotation.Z * z2;
return new Vector3(
value.x * (1.0f - yy2 - zz2) + value.y * (xy2 - wz2) + value.z * (xz2 + wy2),
value.x * (xy2 + wz2) + value.y * (1.0f - xx2 - zz2) + value.z * (yz2 - wx2),
value.x * (xz2 - wy2) + value.y * (yz2 + wx2) + value.z * (1.0f - xx2 - yy2)
);
}
///
/// Calculates the linear and angular velocities on the center of mass for an offset impulse.
///
/// The physics object
/// The impulse acting on the object in kg*units/s (World frame)
/// The location of the impulse in world coordinates
///
/// Vector1: Linear velocity from the impulse (World frame)
/// Vector2: Angular velocity from the impulse (Local frame)
///
public static (Vector3 LinearVelocity, Vector3 AngularVelocity) CalculateVelocityOffset( this PhysicsBody physObj, Vector3 impulse, Vector3 position )
{
if ( !physObj.IsValid() || !physObj.MotionEnabled )
return (Vector3.Zero, Vector3.Zero);
Vector3 linearVelocity = impulse / physObj.Mass;
Vector3 r = position - physObj.MassCenter;
// Calculate torque impulse in world frame: τ = r × impulse
Vector3 torqueImpulseWorld = r.Cross( impulse );
Rotation worldToLocal = physObj.Rotation.Inverse;
Vector3 torqueImpulseLocal = torqueImpulseWorld.Transform( worldToLocal );
var InverseInertiaDiagLocal = physObj.Inertia.Inverse;
// Compute angular velocity change in rad/s (local frame)
Vector3 angularVelocityRadLocal = new(
InverseInertiaDiagLocal.x * torqueImpulseLocal.x,
InverseInertiaDiagLocal.y * torqueImpulseLocal.y,
InverseInertiaDiagLocal.z * torqueImpulseLocal.z
);
const float radToDeg = 180f / MathF.PI;
Vector3 angularVelocityDegLocal = angularVelocityRadLocal * radToDeg;
return (linearVelocity, angularVelocityDegLocal);
}
///
/// Calculates the linear and angular impulses on the object's center of mass for an offset impulse.
///
/// The physics object
/// The impulse acting on the object in kg*units/s (World frame)
/// The location of the impulse in world coordinates
///
/// Vector1: Linear impulse on center of mass (World frame)
/// Vector2: Angular impulse on center of mass (Local frame)
///
public static (Vector3 LinearImpulse, Vector3 AngularImpulse) CalculateForceOffset(
this PhysicsBody physObj,
Vector3 impulse,
Vector3 position )
{
if ( !physObj.IsValid() || !physObj.MotionEnabled )
{
return (Vector3.Zero, Vector3.Zero);
}
// 1. Linear impulse is the same as the input impulse (conservation of momentum)
Vector3 linearImpulse = impulse;
// 2. Calculate angular impulse (torque) from the offset force
// τ = r * F (cross product of position relative to COM and force)
Vector3 centerOfMass = physObj.MassCenter;
Vector3 relativePosition = position - centerOfMass;
Vector3 worldAngularImpulse = relativePosition.Cross( impulse );
// Convert angular impulse to local space (since we'll use it with LocalInertia)
Rotation bodyRotation = physObj.Transform.Rotation;
Vector3 localAngularImpulse = bodyRotation.Inverse * worldAngularImpulse;
return (linearImpulse, localAngularImpulse);
}
}