Compare commits

...

7 Commits

Author SHA1 Message Date
Valera
0905876b99 update 2025-07-18 16:05:48 +07:00
Valera
55a178e8c5 cleanup code 2025-06-16 14:46:43 +07:00
Valera
f0f89ff947 уже лучше 2025-06-15 21:59:42 +07:00
Valera
4912d0ae1a make it savable 2025-06-15 17:17:08 +07:00
Valera
4899a38265 not work 2025-06-15 03:23:47 +07:00
Valera
629ae6715c new pacejka implementation (car not working) 2025-06-14 18:16:26 +07:00
Valera
964b46e1c5 new powertrain смерть чуркам 2025-06-13 21:16:20 +07:00
30 changed files with 1490 additions and 792 deletions

View File

@@ -1,22 +0,0 @@
{
"Longitudinal": {
"B": 18,
"C": 1.5,
"D": 1.5,
"E": 0.3
},
"Lateral": {
"B": 12,
"C": 1.3,
"D": 1.8,
"E": -1.8
},
"Aligning": {
"B": 2.8,
"C": 2.1,
"D": 0.1,
"E": -2.5
},
"__references": [],
"__version": 0
}

View File

@@ -1,22 +0,0 @@
{
"Longitudinal": {
"B": 0,
"C": 1,
"D": 1,
"E": 0.3
},
"Lateral": {
"B": 1,
"C": 1,
"D": 1,
"E": 0.3
},
"Aligning": {
"B": 2.8,
"C": 2.1,
"D": 0.1,
"E": -2.5
},
"__references": [],
"__version": 0
}

View File

@@ -0,0 +1,20 @@
{
"Pacejka": {
"Lateral": {
"B": 12,
"C": 1.3,
"D": 1.8,
"E": -1.8
},
"Longitudinal": {
"B": 10.86,
"C": 2.15,
"D": 2,
"E": 0.992
}
},
"RollResistanceLin": 0.001,
"RollResistanceQuad": 1E-06,
"__references": [],
"__version": 0
}

View File

@@ -0,0 +1,49 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public class Clutch : PowertrainComponent
{
[Property] public override float Inertia { get; set; } = 0.002f;
[Property] public float SlipTorque { get; set; } = 1000f;
public float Pressing { get; set; } = 1; // todo
public override float QueryInertia()
{
if ( !HasOutput )
return Inertia;
return Inertia + Output.QueryInertia() * Pressing;
}
public override float QueryAngularVelocity( float angularVelocity )
{
this.angularVelocity = angularVelocity;
if ( !HasOutput )
return angularVelocity;
float outputW = Output.QueryAngularVelocity( angularVelocity ) * Pressing;
float inputW = angularVelocity * (1 - Pressing);
return outputW + inputW;
}
public override float ForwardStep( float torque, float inertia )
{
if ( !HasOutput )
return torque;
Torque = Math.Clamp( torque, -SlipTorque, SlipTorque );
Torque = torque * (1 - (1 - MathF.Pow( Pressing, 0.3f )));
float returnTorque = Output.ForwardStep( Torque, inertia * Pressing + Inertia ) * Pressing;
return Math.Clamp( returnTorque, -SlipTorque, SlipTorque );
}
}

View File

@@ -0,0 +1,79 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
[Category( "VeloX/Powertrain/Differential" )]
public abstract class BaseDifferential : PowertrainComponent
{
[Property] public float FinalDrive { get; set; } = 3.392f;
[Property] public override float Inertia { get; set; } = 0.01f;
//[Property] public float CoastRamp { get; set; } = 1f;
//[Property] public float PowerRamp { get; set; } = 1f;
//[Property] public float Stiffness { get; set; } = 0.1f;
//[Property] public float SlipTorque { get; set; } = 0f;
//[Property] public float SteerLock { get; set; } = 45f;
/// <summary>
/// The PowertrainComponent this component will output to.
/// </summary>
[Property]
public PowertrainComponent OutputB
{
get => _outputb;
set
{
if ( value == this )
{
_outputb = null;
return;
}
_outputb = value;
if ( _outputb != null )
_outputb.Input = this;
}
}
private PowertrainComponent _outputb;
public override bool HasOutput => Output.IsValid() && OutputB.IsValid();
public override float QueryAngularVelocity( float angularVelocity )
{
this.angularVelocity = angularVelocity;
if ( !HasOutput )
return angularVelocity;
float aW = Output.QueryAngularVelocity( angularVelocity );
float bW = OutputB.QueryAngularVelocity( angularVelocity );
return (aW + bW) * FinalDrive * 0.5f;
}
public abstract void SplitTorque( float aW, float bW, float aI, float bI, out float tqA, out float tqB );
public override float ForwardStep( float torque, float inertia )
{
if ( !HasOutput )
return torque;
float aW = Output.QueryAngularVelocity( angularVelocity );
float bW = OutputB.QueryAngularVelocity( angularVelocity );
float aI = Output.QueryInertia();
float bI = OutputB.QueryInertia();
Torque = torque * FinalDrive;
SplitTorque( aW, bW, aI, bI, out float tqA, out float tqB );
tqA = Output.ForwardStep( tqA, inertia * 0.5f * MathF.Pow( FinalDrive, 2 ) + aI );
tqB = OutputB.ForwardStep( tqB, inertia * 0.5f * MathF.Pow( FinalDrive, 2 ) + bI );
return tqA + tqB;
}
}

View File

@@ -0,0 +1,13 @@
using Sandbox;
namespace VeloX.Powertrain;
public class OpenDifferential : BaseDifferential
{
[Property] public float BiasAB { get; set; } = 0.5f;
public override void SplitTorque( float aW, float bW, float aI, float bI, out float tqA, out float tqB )
{
tqA = Torque * (1 - BiasAB);
tqB = Torque * BiasAB;
}
}

View File

@@ -0,0 +1,109 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public class Engine : PowertrainComponent
{
[Property, Group( "Settings" )] public float IdleRPM { get; set; } = 900f;
[Property, Group( "Settings" )] public float MaxRPM { get; set; } = 7000f;
[Property, Group( "Settings" )] public override float Inertia { get; set; } = 0.151f;
[Property, Group( "Settings" )] public float LimiterDuration { get; set; } = 0.05f;
[Property, Group( "Settings" )] public Curve TorqueMap { get; set; }
[Property, Group( "Settings" )] public EngineStream Stream { get; set; }
[Sync] public float Throttle { get; internal set; }
[Property] public bool IsRedlining => !limiterTimer;
[Property] public float RPMPercent => Math.Clamp( (RPM - IdleRPM) / (MaxRPM - IdleRPM), 0, 1 );
private float masterThrottle;
private TimeUntil limiterTimer;
private float finalTorque;
private EngineStreamPlayer StreamPlayer;
public float[] friction = [15.438f, 2.387f, 0.7958f];
protected override void OnStart()
{
base.OnStart();
StreamPlayer = new( Stream );
}
public float GetFrictionTorque( float throttle, float rpm )
{
float s = rpm < 0 ? -1f : 1f;
float r = s * rpm * 0.001f;
float f = friction[0] + friction[1] * r + friction[2] * r * r;
return -s * f * (1 - throttle);
}
private float GenerateTorque()
{
float throttle = Throttle;
float rpm = RPM;
float friction = GetFrictionTorque( throttle, rpm );
float maxInitialTorque = TorqueMap.Evaluate( RPMPercent ) - friction;
float idleFadeStart = Math.Clamp( MathX.Remap( rpm, IdleRPM - 300, IdleRPM, 1, 0 ), 0, 1 );
float idleFadeEnd = Math.Clamp( MathX.Remap( rpm, IdleRPM, IdleRPM + 600, 1, 0 ), 0, 1 );
float additionalEnergySupply = idleFadeEnd * (-friction / maxInitialTorque) + idleFadeStart;
if ( rpm > MaxRPM )
{
throttle = 0;
limiterTimer = LimiterDuration;
}
else if ( !limiterTimer )
throttle = 0;
masterThrottle = Math.Clamp( additionalEnergySupply + throttle, 0, 1 );
float realInitialTorque = maxInitialTorque * masterThrottle;
Torque = realInitialTorque + friction;
return Torque;
}
public override float ForwardStep( float _, float __ )
{
if ( !HasOutput )
{
angularVelocity += GenerateTorque() / Inertia * Time.Delta;
angularVelocity = Math.Max( angularVelocity, 0 );
return 0;
}
float outputInertia = Output.QueryInertia();
float inertiaSum = Inertia + outputInertia;
float outputW = Output.QueryAngularVelocity( angularVelocity );
float targetW = Inertia / inertiaSum * angularVelocity + outputInertia / inertiaSum * outputW;
float generatedTorque = GenerateTorque();
float reactTorque = (targetW - angularVelocity) * Inertia / Time.Delta;
float returnedTorque = Output.ForwardStep( generatedTorque - reactTorque, Inertia );
finalTorque = generatedTorque + reactTorque + returnedTorque;
angularVelocity += finalTorque / inertiaSum * Time.Delta;
angularVelocity = Math.Max( angularVelocity, 0 );
UpdateStream();
return finalTorque;
}
private void UpdateStream()
{
if ( StreamPlayer is null )
return;
StreamPlayer.Throttle = Throttle;
StreamPlayer.RPMPercent = RPMPercent;
StreamPlayer.EngineState = EngineState.Running;
StreamPlayer.IsRedlining = IsRedlining;
StreamPlayer.Update( Time.Delta, WorldPosition );
}
}

View File

@@ -0,0 +1,45 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
[Category( "VeloX/Powertrain/Gearbox" )]
public abstract class BaseGearbox : PowertrainComponent
{
[Property] public override float Inertia { get; set; } = 0.01f;
protected float ratio;
public override float QueryInertia()
{
if ( !HasOutput || ratio == 0 )
return Inertia;
return Inertia + Output.QueryInertia() / MathF.Pow( ratio, 2 );
}
public override float QueryAngularVelocity( float angularVelocity )
{
this.angularVelocity = angularVelocity;
if ( !HasOutput || ratio == 0 )
return angularVelocity;
return Output.QueryAngularVelocity( angularVelocity ) * ratio;
}
public override float ForwardStep( float torque, float inertia )
{
Torque = torque * ratio;
if ( !HasOutput )
return torque;
if ( ratio == 0 )
{
Output.ForwardStep( 0, Inertia * 0.5f );
return torque;
}
return Output.ForwardStep( Torque, (inertia + Inertia) * MathF.Pow( ratio, 2 ) ) / ratio;
}
}

View File

@@ -0,0 +1,52 @@
using Sandbox;
namespace VeloX.Powertrain;
public class ManualGearbox : BaseGearbox
{
[Property] public float[] Ratios { get; set; } = [3.626f, 2.200f, 1.541f, 1.213f, 1.000f, 0.767f];
[Property] public float Reverse { get; set; } = 3.4f;
[Property, InputAction] public string ForwardAction { get; set; } = "Attack1";
[Property, InputAction] public string BackwardAction { get; set; } = "Attack2";
private int gear;
protected void SetGear( int gear )
{
if ( gear < -1 || gear >= Ratios.Length )
return;
this.gear = gear;
RecalcRatio();
}
private void RecalcRatio()
{
if ( gear == -1 )
ratio = -Reverse;
else if ( gear == 0 )
ratio = 0;
else
ratio = Ratios[gear - 1];
}
public void Shift( int dir )
{
SetGear( gear + dir );
}
private void InputResolve()
{
if ( Sandbox.Input.Pressed( ForwardAction ) )
Shift( 1 );
else if ( Sandbox.Input.Pressed( BackwardAction ) )
Shift( -1 );
}
public override float ForwardStep( float torque, float inertia )
{
InputResolve();
return base.ForwardStep( torque, inertia );
}
}

View File

@@ -0,0 +1,34 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public class PowerWheel : PowertrainComponent
{
[Property] public VeloXWheel Wheel { get; set; }
public override float QueryInertia()
{
float dtScale = Math.Clamp( Time.Delta, 0.01f, 0.05f ) / 0.005f;
return Wheel.BaseInertia * dtScale;
}
public override float QueryAngularVelocity( float angularVelocity )
{
return Wheel.AngularVelocity;
}
public override float ForwardStep( float torque, float inertia )
{
Wheel.AutoPhysics = false;
Wheel.Torque = torque;
Wheel.Brake = Vehicle.Brake;
Inertia = Wheel.BaseInertia + inertia;
Wheel.Inertia = inertia;
Wheel.DoPhysics( Vehicle );
angularVelocity = Wheel.AngularVelocity;
return Wheel.CounterTorque;
}
}

View File

@@ -0,0 +1,100 @@
using Sandbox;
using System;
namespace VeloX.Powertrain;
public abstract class PowertrainComponent : Component
{
protected override void OnAwake()
{
Vehicle ??= Components.Get<VeloXBase>( FindMode.EverythingInSelfAndAncestors );
}
public const float RAD_TO_RPM = 60f / MathF.Tau;
public const float RPM_TO_RAD = 1 / (60 / MathF.Tau);
public const float UNITS_PER_METER = 39.37f;
public const float UNITS_TO_METERS = 0.01905f;
public const float KG_TO_N = 9.80665f;
public const float KG_TO_KN = 0.00980665f;
[Property] public VeloXBase Vehicle { get; set; }
[Property] public virtual float Inertia { get; set; } = 0.02f;
/// <summary>
/// Input component. Set automatically.
/// </summary>
[Property]
public PowertrainComponent Input
{
get => _input;
set
{
if ( value == null || value == this )
{
_input = null;
return;
}
_input = value;
}
}
private PowertrainComponent _input;
public int InputNameHash;
/// <summary>
/// The PowertrainComponent this component will output to.
/// </summary>
[Property]
public PowertrainComponent Output
{
get => _output;
set
{
if ( value == this )
{
_output = null;
return;
}
_output = value;
if ( _output != null )
_output.Input = this;
}
}
private PowertrainComponent _output;
public float RPM => angularVelocity * RAD_TO_RPM;
protected float angularVelocity;
protected float Torque;
public virtual bool HasOutput => Output.IsValid();
public virtual float QueryInertia()
{
if ( !HasOutput )
return Inertia;
return Inertia + Output.QueryInertia();
}
public virtual float QueryAngularVelocity( float angularVelocity )
{
if ( !HasOutput )
return angularVelocity;
return Output.QueryAngularVelocity( angularVelocity );
}
public virtual float ForwardStep( float torque, float inertia )
{
if ( !HasOutput )
return Torque;
return Output.ForwardStep( Torque, inertia + Inertia );
}
}

View File

@@ -1,4 +1,5 @@
using Sandbox;
using System;
namespace VeloX;
@@ -17,13 +18,22 @@ public abstract partial class VeloXBase
angForce.y = angVel.y * drag.y * mass;
angForce.z = angVel.z * drag.z * mass;
if ( Wheels.Count > 0 )
{
var dt = Time.Delta;
foreach ( var v in Wheels )
v.DoPhysics( this, in dt );
if ( v.AutoPhysics ) v.DoPhysics( this );
var totalSpeed = TotalSpeed + Math.Abs( Body.AngularVelocity.z );
var factor = 1 - Math.Clamp( totalSpeed / 30, 0, 1 );
if ( factor > 0.1f )
{
var vel = Body.Velocity;
var rt = WorldRotation.Right;
var force = rt.Dot( vel ) / Time.Delta * mass * factor * rt;
Body.ApplyForce( -force );
}
Body.ApplyTorque( angForce );

View File

@@ -15,7 +15,7 @@ public abstract partial class VeloXBase : Component
[Property, Group( "Components" )] public Rigidbody Body { get; protected set; }
[Property, Group( "Components" )] public Collider Collider { get; protected set; }
[Sync] public Angles SteerAngle { get; set; }
[Sync( SyncFlags.Interpolate )] public Angles SteerAngle { get; set; }
public Vector3 LocalVelocity;
public float ForwardSpeed;

View File

@@ -1,16 +0,0 @@
using System;
namespace VeloX;
public class FrictionPreset
{
public float B { get; set; } = 10.86f;
public float C { get; set; } = 2.15f;
public float D { get; set; } = 0.933f;
public float E { get; set; } = 0.992f;
public float Evaluate( float slip )
{
var t = Math.Abs( slip );
return D * MathF.Sin( C * MathF.Atan( B * t - E * (B * t - MathF.Atan( B * t )) ) );
}
}

View File

@@ -0,0 +1,43 @@
using Sandbox;
using Sandbox.Services;
using System;
using System.Threading;
namespace VeloX;
public class Pacejka
{
public class PacejkaPreset
{
[KeyProperty] public float B { get; set; } = 10.86f;
[KeyProperty] public float C { get; set; } = 2.15f;
[KeyProperty] public float D { get; set; } = 0.933f;
[KeyProperty] public float E { get; set; } = 0.992f;
public float Evaluate( float slip ) => D * MathF.Sin( C * MathF.Atan( B * slip - E * (B * slip - MathF.Atan( B * slip )) ) );
public float GetPeakSlip()
{
float peakSlip = -1;
float yMax = 0;
for ( float i = 0; i < 1f; i += 0.01f )
{
float y = Evaluate( i );
if ( y > yMax )
{
yMax = y;
peakSlip = i;
}
}
return peakSlip;
}
}
public PacejkaPreset Lateral { get; set; } = new();
public PacejkaPreset Longitudinal { get; set; } = new();
public float PacejkaFx( float slip ) => Longitudinal.Evaluate( slip );
public float PacejkaFy( float slip ) => Lateral.Evaluate( slip );
}

View File

@@ -0,0 +1,18 @@
namespace VeloX;
public class BasicSuspension
{
private readonly Hinge Hinge;
public BasicSuspension( Vector3 wheel, Vector3 hingeBody, Vector3 hingeWheel )
{
Vector3 hingePoint = wheel - (hingeWheel - hingeBody);
Hinge = new Hinge( hingePoint, hingeWheel - hingeBody );
}
public virtual void GetWheelTransform( float travel, out Rotation rotation, out Vector3 position )
{
rotation = Rotation.Identity;
position = Hinge.Rotate( travel );
}
}

View File

@@ -0,0 +1,26 @@
using System;
namespace VeloX;
internal readonly struct Hinge( Vector3 hinge_anchor, Vector3 hinge_arm )
{
[Description( "the point that the wheels are rotated around as the suspension compresses" )]
public readonly Vector3 Anchor = hinge_anchor;
[Description( "anchor to wheel vector" )]
public readonly Vector3 Arm = hinge_arm;
[Description( "arm length squared" )]
public readonly float LengthSquared = hinge_arm.Dot( hinge_arm );
[Description( "1 / arm length in hinge axis normal plane" )]
public readonly float NormXY = 1 / MathF.Sqrt( hinge_arm.x * hinge_arm.x + hinge_arm.y * hinge_arm.y );
public readonly Vector3 Rotate( float travel )
{
float z = Arm.z + travel;
float lengthSq = MathF.Max( LengthSquared - z * z, 0.0f );
float nxy = NormXY * MathF.Sqrt( lengthSq );
return Anchor + new Vector3( Arm.x * nxy, Arm.y * nxy, z );
}
}

View File

@@ -0,0 +1,32 @@
using Sandbox;
using System;
namespace VeloX;
public class MacPhersonSuspension
{
public readonly Vector3 WheelOffset;
public readonly Vector3 UprightTop;
public readonly Vector3 UprightAxis;
private readonly Hinge Hinge;
public MacPhersonSuspension( Vector3 wheel, Vector3 strutBody, Vector3 strutWheel, Vector3 hingeBody )
{
WheelOffset = wheel - strutWheel;
UprightTop = strutBody;
UprightAxis = (strutBody - strutWheel).Normal;
Hinge = new( hingeBody, strutWheel - hingeBody );
}
public void GetWheelTransform( float travel, out Rotation rotation, out Vector3 position )
{
Vector3 hingeEnd = Hinge.Rotate( travel );
Vector3 uprightAxisNew = (UprightTop - hingeEnd).Normal;
rotation = Rotation.FromAxis(
Vector3.Cross( UprightAxis, uprightAxisNew ),
MathF.Acos( Vector3.Dot( UprightAxis, uprightAxisNew ) ).RadianToDegree()
);
position = hingeEnd + WheelOffset.Transform( rotation );
}
}

View File

@@ -0,0 +1,60 @@
using Sandbox;
using System;
namespace VeloX;
[GameResource( "Wheel Friction", "tire", "Wheel Friction", Category = "VeloX", Icon = "radio_button_checked" )]
public class TirePreset : GameResource
{
[Property] public Pacejka Pacejka { get; set; }
public float RollResistanceLin { get; set; } = 1E-3f;
public float RollResistanceQuad { get; set; } = 1E-6f;
public float GetRollingResistance( float velocity, float resistance_factor )
{ // surface influence on rolling resistance
float resistance = resistance_factor * RollResistanceLin;
// heat due to tire deformation increases rolling resistance
// approximate by quadratic function
resistance += velocity * velocity * RollResistanceQuad;
return resistance;
}
public static void ComputeSlip( float lon_velocity, float lat_velocity, float rot_velocity, float wheel_radius, out float slip_ratio, out float slip_angle )
{
var abs_lon = Math.Max( MathF.Abs( lon_velocity ), 1e-3f );
slip_ratio = lon_velocity - rot_velocity * wheel_radius;
if ( abs_lon >= 0.005f )
slip_ratio /= abs_lon;
else
slip_ratio *= abs_lon;
if ( abs_lon >= 0.5f )
slip_angle = MathF.Atan2( -lat_velocity, abs_lon ).RadianToDegree() / 50f;
else
slip_angle = -lat_velocity * (0.01f / Time.Delta);
slip_ratio = Math.Clamp( slip_ratio, -1, 1 );
slip_angle = Math.Clamp( slip_angle, -1, 1 );
}
/// approximate asin(x) = x + x^3/6 for +-18 deg range
public static float ComputeCamberAngle( float sin_camber )
{
float sc = Math.Clamp( sin_camber, -0.3f, 0.3f );
return ((1 / 6.0f) * (sc * sc) + 1) * sc;
}
public static float ComputeCamberVelocity( float sa, float vx )
{
float tansa = (1 / 3.0f * (sa * sa) + 1) * sa;
return tansa * vx;
}
}

View File

@@ -0,0 +1,28 @@
using Sandbox;
using System;
namespace VeloX;
public partial class VeloXWheel : Component
{
private RealTimeUntil expandSoundCD;
private RealTimeUntil contractSoundCD;
private void DoSuspensionSounds( VeloXBase vehicle, float change )
{
if ( change > 0.1f && expandSoundCD )
{
expandSoundCD = 0.3f;
var sound = Sound.Play( vehicle.SuspensionUpSound, WorldPosition );
sound.Volume = Math.Clamp( Math.Abs( change ) * 5f, 0, 0.5f );
}
if ( change < -0.1f && contractSoundCD )
{
contractSoundCD = 0.3f;
change = MathF.Abs( change );
var sound = Sound.Play( change > 0.3f ? vehicle.SuspensionHeavySound : vehicle.SuspensionDownSound, WorldPosition );
sound.Volume = Math.Clamp( change * 5f, 0, 1 );
}
}
}

View File

@@ -1,11 +1,16 @@
using Sandbox;
using Sandbox.Rendering;
using Sandbox.Services;
using Sandbox.UI;
using System;
using System.Buffers.Text;
using System.Collections.Specialized;
using System.Diagnostics.Metrics;
using System.Numerics;
using System.Runtime.Intrinsics.Arm;
using System.Text.RegularExpressions;
using System.Threading;
using static Sandbox.CameraComponent;
using static Sandbox.Package;
using static Sandbox.SkinnedModelRenderer;
namespace VeloX;
@@ -18,18 +23,10 @@ public partial class VeloXWheel : Component
[Property] public float Mass { get; set; } = 20;
[Property] public float RollingResistance { get; set; } = 20;
[Property] public float SlipCircleShape { get; set; } = 1.05f;
public FrictionPreset LongitudinalFrictionPreset => WheelFriction.Longitudinal;
public FrictionPreset LateralFrictionPreset => WheelFriction.Lateral;
public FrictionPreset AligningFrictionPreset => WheelFriction.Aligning;
[Property] public WheelFriction WheelFriction { get; set; }
[Property] public TirePreset TirePreset { get; set; }
[Property] public float Width { get; set; } = 6;
[Sync] public float SideSlip { get; private set; }
[Sync] public float ForwardSlip { get; private set; }
[Sync, Range( 0, 1 )] public float BrakePower { get; set; }
public float SideSlip { get; private set; }
public float ForwardSlip { get; private set; }
[Sync] public float Torque { get; set; }
[Sync, Range( 0, 1 )] public float Brake { get; set; }
[Property] float BrakePowerMax { get; set; } = 3000;
@@ -38,14 +35,19 @@ public partial class VeloXWheel : Component
[Property] public float CasterAngle { get; set; } = 7; // todo
[Property] public float CamberAngle { get; set; } = -3;
[Property] public float ToeAngle { get; set; } = 0.5f;
[Property] public float Ackermann { get; set; } = 0;
[Property, Group( "Suspension" )] float SuspensionLength { get; set; } = 10;
[Property, Group( "Suspension" )] float SpringStrength { get; set; } = 800;
[Property, Group( "Suspension" )] float SpringDamper { get; set; } = 3000;
[Property] public bool AutoPhysics { get; set; } = true;
public float Spin { get; private set; }
public float RPM { get => angularVelocity * 60f / MathF.Tau; set => angularVelocity = value / (60 / MathF.Tau); }
public float RPM { get => angularVelocity * 30f / MathF.PI; set => angularVelocity = value / (30f / MathF.PI); }
public float AngularVelocity { get => angularVelocity; set => angularVelocity = value; }
internal float DistributionFactor { get; set; }
private Vector3 StartPos { get; set; }
@@ -58,20 +60,24 @@ public partial class VeloXWheel : Component
private float angularVelocity;
private float load;
private float lastFraction;
private RealTimeUntil expandSoundCD;
private RealTimeUntil contractSoundCD;
private Vector3 contactPos;
private Vector3 forward;
private Vector3 right;
private Vector3 up;
private Friction forwardFriction;
private Friction sideFriction;
private float forwardFriction;
private float sideFriction;
private Vector3 force;
public float CounterTorque { get; private set; }
internal float BaseInertia => 0.5f * Mass * MathF.Pow( Radius.InchToMeter(), 2 );
public float Inertia
{
get => BaseInertia + inertia;
set => inertia = value;
}
private float BaseInertia => 0.5f * Mass * MathF.Pow( Radius.InchToMeter(), 2 );
private float Inertia => BaseInertia;
protected override void OnAwake()
{
@@ -80,24 +86,6 @@ public partial class VeloXWheel : Component
StartPos = LocalPosition;
}
private void DoSuspensionSounds( VeloXBase vehicle, float change )
{
if ( change > 0.1f && expandSoundCD )
{
expandSoundCD = 0.3f;
var sound = Sound.Play( vehicle.SuspensionUpSound, WorldPosition );
sound.Volume = Math.Clamp( Math.Abs( change ) * 5f, 0, 0.5f );
}
if ( change < -0.1f && contractSoundCD )
{
contractSoundCD = 0.3f;
change = MathF.Abs( change );
var sound = Sound.Play( change > 0.3f ? vehicle.SuspensionHeavySound : vehicle.SuspensionDownSound, WorldPosition );
sound.Volume = Math.Clamp( change * 5f, 0, 1 );
}
}
internal void Update( VeloXBase vehicle, in float dt )
{
UpdateVisuals( vehicle, dt );
@@ -105,94 +93,102 @@ public partial class VeloXWheel : Component
private void UpdateVisuals( VeloXBase vehicle, in float dt )
{
var entityAngles = vehicle.WorldRotation;
Spin -= angularVelocity.MeterToInch() * dt;
var steerRotated = entityAngles.RotateAroundAxis( Vector3.Up, vehicle.SteerAngle.yaw * SteerMultiplier + ToeAngle );
var camberRotated = steerRotated.RotateAroundAxis( Vector3.Forward, -CamberAngle );
var angularVelocityRotated = camberRotated.RotateAroundAxis( Vector3.Right, Spin );
WorldRotation = angularVelocityRotated;
Spin -= angularVelocity.RadianToDegree() * dt;
WorldRotation = vehicle.WorldTransform.RotationToWorld( GetSteer( vehicle.SteerAngle.yaw ) ) * Rotation.FromAxis( Vector3.Right, Spin );
}
private (float, float, float, float) StepLongitudinal( float Vx, float Lc, float kFx, float kSx, float dt )
private Rotation GetSteer( float steer )
{
float Tm = Torque;
float Tb = Brake * BrakePowerMax + RollingResistance;
float R = Radius.InchToMeter();
float I = Inertia;
float Winit = angularVelocity;
float W = angularVelocity;
float angle = (-steer * SteerMultiplier).DegreeToRadian();
float VxAbs = MathF.Abs( Vx );
float t = MathF.Tan( (MathF.PI / 2) - angle ) - Ackermann;
float steering_angle = MathF.CopySign( float.Pi / 2, t ) - MathF.Atan( t );
var steering_axis = Vector3.Up * MathF.Cos( -CasterAngle.DegreeToRadian() ) +
Vector3.Right * MathF.Sin( -CasterAngle.DegreeToRadian() );
return Rotation.FromAxis( Vector3.Forward, -CamberAngle ) * Rotation.FromAxis( steering_axis, steering_angle.RadianToDegree() );
}
private static float GetLongitudinalLoadCoefficient( float load ) => 11000 * (1 - MathF.Exp( -0.00014f * load ));
private static float GetLateralLoadCoefficient( float load ) => 18000 * (1 - MathF.Exp( -0.0001f * load ));
private float inertia;
private (float, float, float, float) StepLongitudinal( float Tm, float Tb, float Vx, float W, float Lc, float R, float I )
{
float wInit = W;
float vxAbs = Math.Abs( Vx );
float Sx;
if ( VxAbs >= 0.1f )
Sx = (Vx - W * R) / VxAbs;
if ( Lc < 0.01f )
{
Sx = 0;
}
else if ( vxAbs >= 0.01f )
{
Sx = (W * R - Vx) / vxAbs;
}
else
Sx = (Vx - W * R) * 0.6f;
{
Sx = (W * R - Vx) * 0.6f;
}
Sx = Math.Clamp( Sx * kSx, -1, 1 );
Sx = Math.Clamp( Sx, -1, 1 );
W += Tm / I * dt;
W += Tm / I * Time.Delta;
Tb *= W > 0 ? -1 : 1;
float TbCap = MathF.Abs( W ) * I / dt;
float Tbr = MathF.Abs( Tb ) - MathF.Abs( TbCap );
Tbr = MathF.Max( Tbr, 0 );
Tb = Math.Clamp( Tb, -TbCap, TbCap );
W += Tb / I * dt;
float tbCap = Math.Abs( W ) * I / Time.Delta;
float tbr = Math.Abs( Tb ) - Math.Abs( tbCap );
tbr = Math.Max( tbr, 0 );
float maxTorque = LongitudinalFrictionPreset.Evaluate( Sx ) * Lc * kFx;
Tb = Math.Clamp( Tb, -tbCap, tbCap );
float errorTorque = (W - Vx / R) * I / dt;
W += Tb / I * Time.Delta;
float surfaceTorque = MathX.Clamp( errorTorque, -maxTorque, maxTorque );
float maxTorque = TirePreset.Pacejka.PacejkaFx( Math.Abs( Sx ) ) * Lc * R;
W -= surfaceTorque / I * dt;
float errorTorque = (W - Vx / R) * I / Time.Delta;
float surfaceTorque = Math.Clamp( errorTorque, -maxTorque, maxTorque );
W -= surfaceTorque / I * Time.Delta;
float Fx = surfaceTorque / R;
tbr *= (W > 0 ? -1 : 1);
float TbCap2 = Math.Abs( W ) * I / Time.Delta;
float Tb2 = Math.Clamp( tbr, -TbCap2, TbCap2 );
W += Tb2 / I * Time.Delta;
Tbr *= W > 0 ? -1 : 1;
float TbCap2 = MathF.Abs( W ) * I / dt;
float Tb2 = Math.Clamp( Tbr, -TbCap2, TbCap2 );
W += Tb2 / I * dt;
float deltaOmegaTorque = (W - Winit) * I / dt;
float deltaOmegaTorque = (W - wInit) * I / Time.Delta;
float Tcnt = -surfaceTorque + Tb + Tb2 - deltaOmegaTorque;
if ( Lc < 0.001f )
Sx = 0;
return (W, Sx, Fx, Tcnt);
}
private (float, float) StepLateral( float Vx, float Vy, float Lc, float kFy, float kSy, float dt )
private void StepLateral( float Vx, float Vy, float Lc, out float Sy, out float Fy )
{
float VxAbs = MathF.Abs( Vx );
float Sy;
float VxAbs = Math.Abs( Vx );
if ( VxAbs > 0.1f )
Sy = MathF.Atan( Vy / VxAbs ).RadianToDegree() * 0.01111f;
else
Sy = Vy * (0.003f / dt);
Sy *= kSy * 0.95f;
Sy = Math.Clamp( Sy * kSy, -1, 1 );
float Fy = -MathF.Sign( Sy ) * LateralFrictionPreset.Evaluate( Sy ) * Lc * kFy;
if ( Lc < 0.0001f )
if ( Lc < 0.01f )
{
Sy = 0;
}
else if ( VxAbs > 0.1f )
{
return (Sy, Fy);
Sy = MathX.RadianToDegree( MathF.Atan( Vy / VxAbs ) ) / 50;
}
else
{
Sy = Vy * (0.003f / Time.Delta);
}
Sy = Math.Clamp( Sy, -1, 1 );
float slipSign = Sy < 0 ? -1 : 1;
Fy = -slipSign * TirePreset.Pacejka.PacejkaFy( Math.Abs( Sy ) ) * Lc;
}
private void SlipCircle( float Sx, float Sy, float Fx, ref float Fy )
@@ -200,39 +196,23 @@ public partial class VeloXWheel : Component
float SxAbs = Math.Abs( Sx );
if ( SxAbs > 0.01f )
{
float SxClamped = Math.Clamp( Sx, -1, 1 );
float SyClamped = Math.Clamp( Sy, -1, 1 );
Vector2 combinedSlip = new(
SxClamped * SlipCircleShape,
SyClamped
);
Vector2 combinedSlip = new( SxClamped * 1.05f, SyClamped );
Vector2 slipDir = combinedSlip.Normal;
float F = MathF.Sqrt( Fx * Fx + Fy * Fy );
float absSlipDirY = Math.Abs( slipDir.y );
float absSlipDirY = MathF.Abs( slipDir.y );
Fy = F * absSlipDirY * MathF.Sign( Fy );
Fy = F * absSlipDirY * (Fy < 0 ? -1 : 1);
}
}
private static float GetLongitudinalLoadCoefficient( float load ) => 11000 * (1 - MathF.Exp( -0.00014f * load ));
private static float GetLateralLoadCoefficient( float load ) => 18000 * (1 - MathF.Exp( -0.0001f * load ));
public void DoPhysics( VeloXBase vehicle, in float dt )
public void DoPhysics( VeloXBase vehicle )
{
var pos = vehicle.WorldTransform.PointToWorld( StartPos );
var ang = vehicle.WorldTransform.RotationToWorld( vehicle.SteerAngle * SteerMultiplier );
forward = ang.Forward;
right = ang.Right;
up = ang.Up;
var ang = vehicle.WorldTransform.RotationToWorld( GetSteer( vehicle.SteerAngle.yaw ) );
var maxLen = SuspensionLength;
@@ -242,113 +222,95 @@ public partial class VeloXWheel : Component
.Cylinder( Width, Radius, pos, endPos )
.Rotated( vehicle.WorldTransform.Rotation * CylinderOffset )
.UseRenderMeshes( false )
.UseHitPosition( false )
.UseHitPosition( true )
.WithoutTags( vehicle.WheelIgnoredTags )
.Run();
forward = Vector3.VectorPlaneProject( ang.Forward, Trace.Normal );
right = Vector3.VectorPlaneProject( ang.Right, Trace.Normal );
var fraction = Trace.Fraction;
contactPos = pos - maxLen * fraction * up;
contactPos = pos - maxLen * fraction * ang.Up;
LocalPosition = vehicle.WorldTransform.PointToLocal( contactPos );
DoSuspensionSounds( vehicle, fraction - lastFraction );
lastFraction = fraction;
var normal = Trace.Normal;
var vel = vehicle.Body.GetVelocityAtPoint( pos );
vel.x = vel.x.InchToMeter();
vel.y = vel.y.InchToMeter();
vel.z = vel.z.InchToMeter();
if ( !IsOnGround )
{
SideSlip = 0;
ForwardSlip = 0;
return;
}
var vel = vehicle.Body.GetVelocityAtPoint( contactPos );
var offset = maxLen - (fraction * maxLen);
var springForce = (offset * SpringStrength);
var springForce = offset * SpringStrength;
var damperForce = (lastSpringOffset - offset) * SpringDamper;
lastSpringOffset = offset;
force = (springForce - damperForce) * MathF.Max( 0, up.Dot( normal ) ) * normal / dt;
// Vector3.CalculateVelocityOffset is broken (need fix)
//var velU = normal.Dot( vel ).MeterToInch();
//if ( velU < 0 && offset + Math.Abs( velU * dt ) > SuspensionLength )
//{
// var (linearVel, angularVel) = vehicle.Body.PhysicsBody.CalculateVelocityOffset( (-velU.InchToMeter() / dt) * normal, pos );
// vehicle.Body.Velocity += linearVel;
// vehicle.Body.AngularVelocity += angularVel;
//}
load = springForce - damperForce;
load = Math.Max( load, 0 );
var velU = Trace.Normal.Dot( vel );
var longitudinalLoadCoefficient = GetLongitudinalLoadCoefficient( load );
var lateralLoadCoefficient = GetLateralLoadCoefficient( load );
float forwardSpeed = 0;
float sideSpeed = 0;
if ( IsOnGround )
if ( velU < 0 && offset + Math.Abs( velU * Time.Delta ) > SuspensionLength )
{
forwardSpeed = vel.Dot( forward );
sideSpeed = vel.Dot( right );
vehicle.Body.CalculateVelocityOffset( -velU / Time.Delta * Trace.Normal, pos, out var linearImp, out var angularImp );
vehicle.Body.Velocity += linearImp;
vehicle.Body.AngularVelocity += angularImp;
vehicle.Body.CalculateVelocityOffset( Trace.HitPosition - (contactPos + Trace.Normal * velU * Time.Delta), pos, out var lin, out _ );
vehicle.WorldPosition += lin / Time.Delta;
damperForce = 0;
}
(float W, float Sx, float Fx, float _) = StepLongitudinal(
force = (springForce - damperForce) * Trace.Normal;
load = Math.Max( springForce - damperForce, 0 );
float R = Radius.InchToMeter();
float forwardSpeed = vel.Dot( forward ).InchToMeter();
float sideSpeed = vel.Dot( right ).InchToMeter();
float longitudinalLoadCoefficient = GetLongitudinalLoadCoefficient( load );
float lateralLoadCoefficient = GetLateralLoadCoefficient( load );
float F_roll = TirePreset.GetRollingResistance( angularVelocity * R, 1.0f ) * 10000;
( float W, float Sx, float Fx, float counterTq) = StepLongitudinal(
Torque,
Brake * BrakePowerMax + F_roll,
forwardSpeed,
angularVelocity,
longitudinalLoadCoefficient,
0.95f,
0.9f,
dt
R,
Inertia
);
(float Sy, float Fy) = StepLateral(
forwardSpeed,
sideSpeed,
lateralLoadCoefficient,
0.95f,
0.9f,
dt
);
StepLateral( forwardSpeed, sideSpeed, lateralLoadCoefficient, out float Sy, out float Fy );
SlipCircle( Sx, Sy, Fx, ref Fy );
CounterTorque = counterTq;
angularVelocity = W;
forwardFriction = new Friction()
{
Slip = Sx,
Force = Fx.MeterToInch(),
Speed = forwardSpeed
};
force += forward * Fx;
force += right * Fy * Math.Clamp( vehicle.TotalSpeed * 0.005f, 0, 1 );
ForwardSlip = Sx;
SideSlip = Sy * Math.Clamp( vehicle.TotalSpeed * 0.005f, 0, 1 );
sideFriction = new Friction()
{
Slip = Sy,
Force = Fy.MeterToInch(),
Speed = sideSpeed
};
var frictionforce = right * sideFriction.Force + forward * forwardFriction.Force;
vehicle.Body.ApplyForceAt( contactPos, force + frictionforce );
vehicle.Body.ApplyForceAt( pos, force / Time.Delta );
}
// debug
#if DEBUG
protected override void OnUpdate()
{
DebugOverlay.Normal( contactPos, forward * forwardFriction.Force / 10000f, Color.Red, overlay: true );
DebugOverlay.Normal( contactPos, right * sideFriction.Force / 10000f, Color.Green, overlay: true );
DebugOverlay.Normal( contactPos, up * force / 50000f, Color.Blue, overlay: true );
DebugOverlay.Normal( contactPos, forward * forwardFriction, Color.Red, overlay: true );
DebugOverlay.Normal( contactPos, right * sideFriction, Color.Green, overlay: true );
DebugOverlay.Normal( contactPos, up * force / 1000f, Color.Blue, overlay: true );
}
#endif
}

View File

@@ -1,12 +0,0 @@
using Sandbox;
namespace VeloX;
[GameResource( "Wheel Friction", "whfric", "Wheel Friction", Category = "VeloX", Icon = "radio_button_checked" )]
public class WheelFriction : GameResource
{
public FrictionPreset Longitudinal { get; set; }
public FrictionPreset Lateral { get; set; }
public FrictionPreset Aligning { get; set; }
}

View File

@@ -1,354 +1,365 @@
using Sandbox;
using System;
using System.Collections.Generic;
using VeloX.Powertrain;
namespace VeloX;
public partial class VeloXCar
{
[Property, Feature( "Engine" ), Sync] public EngineState EngineState { get; set; }
[Property, Feature( "Engine" )] public EngineStream Stream { get; set; }
public EngineStreamPlayer StreamPlayer { get; set; }
[Property, Feature( "Engine" )] public float MinRPM { get; set; } = 800;
[Property, Feature( "Engine" )] public float MaxRPM { get; set; } = 7000;
[Property, Feature( "Engine" ), Range( -1, 1 )]
public float PowerDistribution
{
get => powerDistribution; set
{
powerDistribution = value;
UpdatePowerDistribution();
}
}
[Property, Feature( "Engine" )] public float FlyWheelMass { get; set; } = 80f;
[Property, Feature( "Engine" )] public float FlyWheelRadius { get; set; } = 0.5f;
[Property, Feature( "Engine" )] public float FlywheelFriction { get; set; } = -6000;
[Property, Feature( "Engine" )] public float FlywheelTorque { get; set; } = 20000;
[Property, Feature( "Engine" )] public float EngineBrakeTorque { get; set; } = 2000;
[Property, Feature( "Engine" )]
public Dictionary<int, float> Gears { get; set; } = new()
{
[-1] = 2.5f,
[0] = 0f,
[1] = 2.8f,
[2] = 1.7f,
[3] = 1.2f,
[4] = 0.9f,
[5] = 0.75f,
[6] = 0.7f
};
[Property, Feature( "Engine" )] public float DifferentialRatio { get; set; } = 1f;
[Property, Feature( "Engine" ), Range( 0, 1 )] public float TransmissionEfficiency { get; set; } = 0.8f;
[Property, Feature( "Engine" )] private float MinRPMTorque { get; set; } = 5000f;
[Property, Feature( "Engine" )] private float MaxRPMTorque { get; set; } = 8000f;
[Sync] public int Gear { get; set; } = 0;
[Sync] public float Clutch { get; set; } = 1;
[Sync( SyncFlags.Interpolate )] public float EngineRPM { get; set; }
public float RPMPercent => (EngineRPM - MinRPM) / MaxRPM;
private const float TAU = MathF.Tau;
private int MinGear { get; set; }
private int MaxGear { get; set; }
[Sync] public bool IsRedlining { get; private set; }
private float flywheelVelocity;
private TimeUntil switchCD = 0;
private float groundedCount;
private float burnout;
private float frontBrake;
private float rearBrake;
private float availableFrontTorque;
private float availableRearTorque;
private float avgSideSlip;
private float avgPoweredRPM;
private float avgForwardSlip;
private float inputThrottle, inputBrake;
private bool inputHandbrake;
private float transmissionRPM;
private float powerDistribution;
public float FlywheelRPM
{
get => flywheelVelocity * 60 / TAU;
set
{
flywheelVelocity = value * TAU / 60; EngineRPM = value;
}
}
private void UpdateGearList()
{
int minGear = 0;
int maxGear = 0;
foreach ( var (gear, ratio) in Gears )
{
if ( gear < minGear )
minGear = gear;
if ( gear > maxGear )
maxGear = gear;
if ( minGear != 0 || maxGear != 0 )
{
SwitchGear( 0, false );
}
}
MinGear = minGear;
MaxGear = maxGear;
}
public void SwitchGear( int index, bool cooldown = true )
{
if ( Gear == index ) return;
index = Math.Clamp( index, MinGear, MaxGear );
if ( index == 0 || !cooldown )
switchCD = 0;
else
switchCD = 0.3f;
Clutch = 1;
Gear = index;
}
public float TransmissionToEngineRPM( int gear ) => avgPoweredRPM * Gears[gear] * DifferentialRatio * 60 / TAU;
public float GetTransmissionMaxRPM( int gear ) => FlywheelRPM / Gears[gear] / DifferentialRatio;
private void UpdatePowerDistribution()
{
if ( Wheels is null ) return;
int frontCount = 0, rearCount = 0;
foreach ( var wheel in Wheels )
{
if ( wheel.IsFront )
frontCount++;
else
rearCount++;
}
float frontDistribution = 0.5f + PowerDistribution * 0.5f;
float rearDistribution = 1 - frontDistribution;
frontDistribution /= frontCount;
rearDistribution /= rearCount;
foreach ( var wheel in Wheels )
if ( wheel.IsFront )
wheel.DistributionFactor = frontDistribution;
else
wheel.DistributionFactor = rearDistribution;
}
private void EngineAccelerate( float torque, float dt )
{
var inertia = 0.5f * FlyWheelMass * FlyWheelRadius * FlyWheelRadius;
var angularAcceleration = torque / inertia;
flywheelVelocity += angularAcceleration * dt;
}
private float GetTransmissionTorque( int gear, float minTorque, float maxTorque )
{
var torque = FlywheelRPM.Remap( MinRPM, MaxRPM, minTorque, maxTorque, true );
torque *= (1 - Clutch);
torque = torque * Gears[gear] * DifferentialRatio * TransmissionEfficiency;
return gear == -1 ? -torque : torque;
}
private void AutoGearSwitch()
{
if ( ForwardSpeed < 100 && Input.Down( "Backward" ) )
{
SwitchGear( -1, false );
return;
}
var currentGear = Gear;
if ( currentGear < 0 && ForwardSpeed < -100 )
return;
if ( Math.Abs( avgForwardSlip ) > 10 )
return;
var gear = Math.Clamp( currentGear, 1, MaxGear );
float minRPM = MinRPM, maxRPM = MaxRPM;
maxRPM *= 0.98f;
float gearRPM;
for ( int i = 1; i <= MaxGear; i++ )
{
gearRPM = TransmissionToEngineRPM( i );
if ( (i == 1 && gearRPM < minRPM) || (gearRPM > minRPM && gearRPM < maxRPM) )
{
gear = i;
break;
}
}
var threshold = minRPM + (maxRPM - minRPM) * (0.5 - Throttle * 0.3);
if ( gear < currentGear && gear > currentGear - 2 && EngineRPM > threshold )
return;
SwitchGear( gear );
}
private float EngineClutch( float dt )
{
if ( !switchCD )
{
inputThrottle = 0;
return 0;
}
if ( inputHandbrake )
return 1;
var absForwardSpeed = Math.Abs( ForwardSpeed );
if ( groundedCount < 1 && absForwardSpeed > 30 )
return 1;
if ( ForwardSpeed < -50 && inputBrake > 0 && Gear < 0 )
return 1;
if ( absForwardSpeed > 200 )
return 0;
return inputThrottle > 0.1f ? 0 : 1;
}
[Property, Feature( "Engine" )] Engine Engine { get; set; }
private void EngineThink( float dt )
{
inputThrottle = Input.Down( "Forward" ) ? 1 : 0;
inputBrake = Input.Down( "Backward" ) ? 1 : 0;
inputHandbrake = Input.Down( "Jump" );
if ( burnout > 0 )
{
SwitchGear( 1, false );
if ( inputThrottle < 0.1f || inputBrake < 0.1f )
burnout = 0;
}
else
AutoGearSwitch();
if ( Gear < 0 )
(inputBrake, inputThrottle) = (inputThrottle, inputBrake);
var rpm = FlywheelRPM;
var clutch = EngineClutch( dt );
if ( inputThrottle > 0.1 && inputBrake > 0.1 && Math.Abs( ForwardSpeed ) < 50 )
{
burnout = MathX.Approach( burnout, 1, dt * 2 );
Clutch = 0;
}
else if ( inputHandbrake )
{
frontBrake = 0f;
rearBrake = 0.5f;
Clutch = 1;
clutch = 1;
}
else
{
if ( (Gear == -1 || Gear == 1) && inputThrottle < 0.05f && inputBrake < 0.1f && groundedCount > 1 && rpm < MinRPM * 1.2f )
inputBrake = 0.2f;
frontBrake = inputBrake * 0.5f;
rearBrake = inputBrake * 0.5f;
Engine.Throttle = Input.Down( "Forward" ) ? 1 : 0;
Engine.ForwardStep( 0, 0 );
}
clutch = MathX.Approach( Clutch, clutch, dt * ((Gear < 2 && inputThrottle > 0.1f) ? 6 : 2) );
Clutch = clutch;
//[Property, Feature( "Engine" ), Sync] public EngineState EngineState { get; set; }
//[Property, Feature( "Engine" )] public EngineStream Stream { get; set; }
//public EngineStreamPlayer StreamPlayer { get; set; }
var isRedlining = false;
transmissionRPM = 0;
//[Property, Feature( "Engine" )] public float MinRPM { get; set; } = 800;
//[Property, Feature( "Engine" )] public float MaxRPM { get; set; } = 7000;
//[Property, Feature( "Engine" ), Range( -1, 1 )]
//public float PowerDistribution
//{
// get => powerDistribution; set
// {
// powerDistribution = value;
// UpdatePowerDistribution();
// }
//}
//[Property, Feature( "Engine" )] public float FlyWheelMass { get; set; } = 80f;
//[Property, Feature( "Engine" )] public float FlyWheelRadius { get; set; } = 0.5f;
//[Property, Feature( "Engine" )] public float FlywheelFriction { get; set; } = -6000;
//[Property, Feature( "Engine" )] public float FlywheelTorque { get; set; } = 20000;
//[Property, Feature( "Engine" )] public float EngineBrakeTorque { get; set; } = 2000;
//[Property, Feature( "Engine" )]
//public Dictionary<int, float> Gears { get; set; } = new()
//{
// [-1] = 2.5f,
// [0] = 0f,
// [1] = 2.8f,
// [2] = 1.7f,
// [3] = 1.2f,
// [4] = 0.9f,
// [5] = 0.75f,
// [6] = 0.7f
//};
//[Property, Feature( "Engine" )] public float DifferentialRatio { get; set; } = 1f;
//[Property, Feature( "Engine" ), Range( 0, 1 )] public float TransmissionEfficiency { get; set; } = 0.8f;
//[Property, Feature( "Engine" )] private float MinRPMTorque { get; set; } = 5000f;
//[Property, Feature( "Engine" )] private float MaxRPMTorque { get; set; } = 8000f;
//[Sync] public int Gear { get; set; } = 0;
//[Sync] public float Clutch { get; set; } = 1;
//[Sync( SyncFlags.Interpolate )] public float EngineRPM { get; set; }
//public float RPMPercent => (EngineRPM - MinRPM) / MaxRPM;
if ( Gear != 0 )
{
transmissionRPM = TransmissionToEngineRPM( Gear );
transmissionRPM = Gear < 0 ? -transmissionRPM : transmissionRPM;
rpm = (rpm * clutch) + (MathF.Max( 0, transmissionRPM ) * (1 - clutch));
}
var throttle = Throttle;
//private const float TAU = MathF.Tau;
var gearTorque = GetTransmissionTorque( Gear, MinRPMTorque, MaxRPMTorque );
//private int MinGear { get; set; }
//private int MaxGear { get; set; }
var availableTorque = gearTorque * throttle;
//[Sync] public bool IsRedlining { get; private set; }
if ( transmissionRPM < 0 )
{
availableTorque += gearTorque * 2;
}
else
{
var engineBrakeTorque = GetTransmissionTorque( Gear, EngineBrakeTorque, EngineBrakeTorque );
//private float flywheelVelocity;
//private TimeUntil switchCD = 0;
//private float groundedCount;
//private float burnout;
availableTorque -= engineBrakeTorque * (1 - throttle) * 0.5f;
}
//private float frontBrake;
//private float rearBrake;
var maxRPM = MaxRPM;
//private float availableFrontTorque;
//private float availableRearTorque;
if ( rpm < MinRPM )
{
rpm = MinRPM;
}
else if ( rpm > maxRPM )
{
//private float avgSideSlip;
//private float avgPoweredRPM;
//private float avgForwardSlip;
if ( rpm > maxRPM * 1.2f )
availableTorque = 0;
//private float inputThrottle, inputBrake;
//private bool inputHandbrake;
//private float transmissionRPM;
//private float powerDistribution;
rpm = maxRPM;
//public float FlywheelRPM
//{
// get => flywheelVelocity * 60 / TAU;
// set
// {
// flywheelVelocity = value * TAU / 60; EngineRPM = value;
// }
//}
//private void UpdateGearList()
//{
// int minGear = 0;
// int maxGear = 0;
if ( Gear != MaxGear || groundedCount < Wheels.Count )
isRedlining = true;
}
// foreach ( var (gear, ratio) in Gears )
// {
FlywheelRPM = Math.Clamp( rpm, 0, maxRPM );
// if ( gear < minGear )
// minGear = gear;
if ( burnout > 0 )
availableTorque += availableTorque * burnout * 0.1f;
// if ( gear > maxGear )
// maxGear = gear;
var front = 0.5f + PowerDistribution * 0.5f;
var rear = 1 - front;
// if ( minGear != 0 || maxGear != 0 )
// {
// SwitchGear( 0, false );
// }
// }
availableFrontTorque = availableTorque * front;
availableRearTorque = availableTorque * rear;
// MinGear = minGear;
// MaxGear = maxGear;
throttle = MathX.Approach( throttle, inputThrottle, dt * 4 );
//}
EngineAccelerate( FlywheelFriction + FlywheelTorque * throttle, dt );
//public void SwitchGear( int index, bool cooldown = true )
//{
// if ( Gear == index ) return;
// index = Math.Clamp( index, MinGear, MaxGear );
Throttle = throttle;
// if ( index == 0 || !cooldown )
// switchCD = 0;
// else
// switchCD = 0.3f;
// Clutch = 1;
// Gear = index;
//}
IsRedlining = (isRedlining && inputThrottle > 0);
}
//public float TransmissionToEngineRPM( int gear ) => avgPoweredRPM * Gears[gear] * DifferentialRatio * 60 / TAU;
//public float GetTransmissionMaxRPM( int gear ) => FlywheelRPM / Gears[gear] / DifferentialRatio;
//private void UpdatePowerDistribution()
//{
// if ( Wheels is null ) return;
// int frontCount = 0, rearCount = 0;
// foreach ( var wheel in Wheels )
// {
// if ( wheel.IsFront )
// frontCount++;
// else
// rearCount++;
// }
// float frontDistribution = 0.5f + PowerDistribution * 0.5f;
// float rearDistribution = 1 - frontDistribution;
// frontDistribution /= frontCount;
// rearDistribution /= rearCount;
// foreach ( var wheel in Wheels )
// if ( wheel.IsFront )
// wheel.DistributionFactor = frontDistribution;
// else
// wheel.DistributionFactor = rearDistribution;
//}
//private void EngineAccelerate( float torque, float dt )
//{
// var inertia = 0.5f * FlyWheelMass * FlyWheelRadius * FlyWheelRadius;
// var angularAcceleration = torque / inertia;
// flywheelVelocity += angularAcceleration * dt;
//}
//private float GetTransmissionTorque( int gear, float minTorque, float maxTorque )
//{
// var torque = FlywheelRPM.Remap( MinRPM, MaxRPM, minTorque, maxTorque, true );
// torque *= (1 - Clutch);
// torque = torque * Gears[gear] * DifferentialRatio * TransmissionEfficiency;
// return gear == -1 ? -torque : torque;
//}
//private void AutoGearSwitch()
//{
// if ( ForwardSpeed < 100 && Input.Down( "Backward" ) )
// {
// SwitchGear( -1, false );
// return;
// }
// var currentGear = Gear;
// if ( currentGear < 0 && ForwardSpeed < -100 )
// return;
// if ( Math.Abs( avgForwardSlip ) > 10 )
// return;
// var gear = Math.Clamp( currentGear, 1, MaxGear );
// float minRPM = MinRPM, maxRPM = MaxRPM;
// maxRPM *= 0.98f;
// float gearRPM;
// for ( int i = 1; i <= MaxGear; i++ )
// {
// gearRPM = TransmissionToEngineRPM( i );
// if ( (i == 1 && gearRPM < minRPM) || (gearRPM > minRPM && gearRPM < maxRPM) )
// {
// gear = i;
// break;
// }
// }
// var threshold = minRPM + (maxRPM - minRPM) * (0.5 - Throttle * 0.3);
// if ( gear < currentGear && gear > currentGear - 2 && EngineRPM > threshold )
// return;
// SwitchGear( gear );
//}
//private float EngineClutch( float dt )
//{
// if ( !switchCD )
// {
// inputThrottle = 0;
// return 0;
// }
// if ( inputHandbrake )
// return 1;
// var absForwardSpeed = Math.Abs( ForwardSpeed );
// if ( groundedCount < 1 && absForwardSpeed > 30 )
// return 1;
// if ( ForwardSpeed < -50 && inputBrake > 0 && Gear < 0 )
// return 1;
// if ( absForwardSpeed > 200 )
// return 0;
// return inputThrottle > 0.1f ? 0 : 1;
//}
//private void EngineThink( float dt )
//{
// inputThrottle = Input.Down( "Forward" ) ? 1 : 0;
// inputBrake = Input.Down( "Backward" ) ? 1 : 0;
// inputHandbrake = Input.Down( "Jump" );
// if ( burnout > 0 )
// {
// SwitchGear( 1, false );
// if ( inputThrottle < 0.1f || inputBrake < 0.1f )
// burnout = 0;
// }
// else
// AutoGearSwitch();
// if ( Gear < 0 )
// (inputBrake, inputThrottle) = (inputThrottle, inputBrake);
// var rpm = FlywheelRPM;
// var clutch = EngineClutch( dt );
// if ( inputThrottle > 0.1 && inputBrake > 0.1 && Math.Abs( ForwardSpeed ) < 50 )
// {
// burnout = MathX.Approach( burnout, 1, dt * 2 );
// Clutch = 0;
// }
// else if ( inputHandbrake )
// {
// frontBrake = 0f;
// rearBrake = 0.5f;
// Clutch = 1;
// clutch = 1;
// }
// else
// {
// if ( (Gear == -1 || Gear == 1) && inputThrottle < 0.05f && inputBrake < 0.1f && groundedCount > 1 && rpm < MinRPM * 1.2f )
// inputBrake = 0.2f;
// frontBrake = inputBrake * 0.5f;
// rearBrake = inputBrake * 0.5f;
// }
// clutch = MathX.Approach( Clutch, clutch, dt * ((Gear < 2 && inputThrottle > 0.1f) ? 6 : 2) );
// Clutch = clutch;
// var isRedlining = false;
// transmissionRPM = 0;
// if ( Gear != 0 )
// {
// transmissionRPM = TransmissionToEngineRPM( Gear );
// transmissionRPM = Gear < 0 ? -transmissionRPM : transmissionRPM;
// rpm = (rpm * clutch) + (MathF.Max( 0, transmissionRPM ) * (1 - clutch));
// }
// var throttle = Throttle;
// var gearTorque = GetTransmissionTorque( Gear, MinRPMTorque, MaxRPMTorque );
// var availableTorque = gearTorque * throttle;
// if ( transmissionRPM < 0 )
// {
// availableTorque += gearTorque * 2;
// }
// else
// {
// var engineBrakeTorque = GetTransmissionTorque( Gear, EngineBrakeTorque, EngineBrakeTorque );
// availableTorque -= engineBrakeTorque * (1 - throttle) * 0.5f;
// }
// var maxRPM = MaxRPM;
// if ( rpm < MinRPM )
// {
// rpm = MinRPM;
// }
// else if ( rpm > maxRPM )
// {
// if ( rpm > maxRPM * 1.2f )
// availableTorque = 0;
// rpm = maxRPM;
// if ( Gear != MaxGear || groundedCount < Wheels.Count )
// isRedlining = true;
// }
// FlywheelRPM = Math.Clamp( rpm, 0, maxRPM );
// if ( burnout > 0 )
// availableTorque += availableTorque * burnout * 0.1f;
// var front = 0.5f + PowerDistribution * 0.5f;
// var rear = 1 - front;
// availableFrontTorque = availableTorque * front;
// availableRearTorque = availableTorque * rear;
// throttle = MathX.Approach( throttle, inputThrottle, dt * 4 );
// EngineAccelerate( FlywheelFriction + FlywheelTorque * throttle, dt );
// Throttle = throttle;
// IsRedlining = (isRedlining && inputThrottle > 0);
//}
}

View File

@@ -14,33 +14,40 @@ public partial class VeloXCar
[Property, Feature( "Steer" )] public float MaxSteerAngle { get; set; } = 35f;
[Sync] public float Steering { get; private set; }
private float jTurnMultiplier;
private float inputSteer;
public static float SignedAngle( Vector3 from, Vector3 to, Vector3 axis )
{
float unsignedAngle = Vector3.GetAngle( from, to );
float cross_x = from.y * to.z - from.z * to.y;
float cross_y = from.z * to.x - from.x * to.z;
float cross_z = from.x * to.y - from.y * to.x;
float sign = MathF.Sign( axis.x * cross_x + axis.y * cross_y + axis.z * cross_z );
return unsignedAngle * sign;
}
public float VelocityAngle { get; private set; }
public int CarDirection { get { return ForwardSpeed.InchToMeter() < 5 ? 0 : (VelocityAngle < 90 && VelocityAngle > -90 ? 1 : -1); } }
private void UpdateSteering( float dt )
{
var inputSteer = Input.AnalogMove.y;
var absInputSteer = Math.Abs( inputSteer );
var sideSlip = Math.Clamp( avgSideSlip, -1, 1 );
var steerConeFactor = Math.Clamp( TotalSpeed / SteerConeMaxSpeed, 0, 1 );
var steerCone = 1 - steerConeFactor * (1 - SteerConeMaxAngle);
VelocityAngle = 0;// -SignedAngle( Body.Velocity, WorldRotation.Forward, WorldRotation.Up );
steerCone = Math.Clamp( steerCone, Math.Abs( sideSlip ), 1 );
//var steerConeFactor = Math.Clamp( TotalSpeed / SteerConeMaxSpeed, 0, 1 );
//var steerCone = 1 - steerConeFactor * (1 - SteerConeMaxAngle);
inputSteer = ExpDecay( this.inputSteer, inputSteer * steerCone, SteerConeChangeRate, dt );
inputSteer = ExpDecay( this.inputSteer, inputSteer, SteerConeChangeRate, dt );
this.inputSteer = inputSteer;
var counterSteer = sideSlip * steerConeFactor * (1 - absInputSteer);
counterSteer = Math.Clamp( counterSteer, -1, 1 ) * CounterSteer;
inputSteer = Math.Clamp( inputSteer + counterSteer, -1, 1 );
float target = -inputSteer * MaxSteerAngle;
if ( CarDirection > 0 )
target -= VelocityAngle * CounterSteer;
inputSteer = Math.Clamp( inputSteer, -1, 1 );
Steering = inputSteer;
SteerAngle = new( 0, inputSteer * MaxSteerAngle, 0 );
if ( ForwardSpeed < -100 )
jTurnMultiplier = 0.5f;
else
jTurnMultiplier = ExpDecay( jTurnMultiplier, 1, 2, dt );
SteerAngle = new( 0, target, 0 );
}
}

View File

@@ -2,45 +2,9 @@
public partial class VeloXCar
{
private void WheelThink( in float dt )
{
var maxRPM = GetTransmissionMaxRPM( Gear );
var frontTorque = availableFrontTorque;
var rearTorque = availableRearTorque;
groundedCount = 0;
float avgRPM = 0, totalSideSlip = 0, totalForwardSlip = 0;
foreach ( var w in Wheels )
{
w.Update( this, dt );
totalSideSlip += w.SideSlip;
totalForwardSlip += w.ForwardSlip;
var rpm = w.RPM;
avgRPM += rpm * w.DistributionFactor;
w.Torque = w.DistributionFactor * (w.IsFront ? frontTorque : rearTorque);
w.Brake = w.IsFront ? frontBrake : rearBrake;
if ( inputHandbrake && !w.IsFront )
w.RPM = 0;
if ( rpm > maxRPM )
w.RPM = maxRPM;
if ( w.IsOnGround )
groundedCount++;
}
avgPoweredRPM = avgRPM;
avgSideSlip = totalSideSlip / Wheels.Count;
avgForwardSlip = totalForwardSlip / Wheels.Count;
}
}

View File

@@ -7,32 +7,6 @@ namespace VeloX;
[Title( "VeloX - Car" )]
public partial class VeloXCar : VeloXBase
{
protected override void OnStart()
{
base.OnStart();
StreamPlayer = new( Stream );
if ( IsDriver )
{
UpdateGearList();
UpdatePowerDistribution();
}
}
protected override void OnUpdate()
{
base.OnUpdate();
if ( StreamPlayer is not null )
{
StreamPlayer.Throttle = Throttle;
StreamPlayer.RPMPercent = RPMPercent;
StreamPlayer.EngineState = EngineState;
StreamPlayer.IsRedlining = IsRedlining;
StreamPlayer.Update( Time.Delta, WorldPosition );
}
}
protected override void OnFixedUpdate()
{
if ( !IsDriver )
@@ -40,9 +14,10 @@ public partial class VeloXCar : VeloXBase
base.OnFixedUpdate();
Brake = Math.Clamp( frontBrake + rearBrake + (Input.Down( "Jump" ) ? 1 : 0), 0, 1 );
Brake = Math.Clamp( (Input.Down( "Jump" ) ? 1 : 0), 0, 1 );
var dt = Time.Delta;
EngineThink( dt );
WheelThink( dt );
UpdateSteering( dt );

View File

@@ -28,44 +28,38 @@ public static class PhysicsExtensions
value.x * (xz2 - wy2) + value.y * (yz2 + wx2) + value.z * (1.0f - xx2 - yy2)
);
}
/// <summary>
/// Calculates the linear and angular velocities on the center of mass for an offset impulse.
/// Calculates the linear and angular velocities on the object's center of mass for an offset impulse.
/// </summary>
/// <param name="physObj">The physics object</param>
/// <param name="impulse">The impulse acting on the object in kg*units/s (World frame)</param>
/// <param name="position">The location of the impulse in world coordinates</param>
/// <returns>
/// Vector1: Linear velocity from the impulse (World frame)
/// Vector2: Angular velocity from the impulse (Local frame)
/// </returns>
public static (Vector3 LinearVelocity, Vector3 AngularVelocity) CalculateVelocityOffset( this PhysicsBody physObj, Vector3 impulse, Vector3 position )
/// <param name="LinearVelocity">Linear velocity on center of mass (World frame)</param>
/// <param name="AngularVelocity">Angular velocity on center of mass (World frame)</param>
public static void CalculateVelocityOffset(
this Rigidbody physObj,
Vector3 impulse,
Vector3 position,
out Vector3 LinearVelocity,
out Vector3 AngularVelocity )
{
if ( !physObj.IsValid() || !physObj.MotionEnabled )
return (Vector3.Zero, Vector3.Zero);
{
LinearVelocity = 0;
AngularVelocity = 0;
return;
}
Vector3 com = physObj.WorldTransform.PointToWorld( physObj.MassCenter );
Rotation bodyRot = physObj.PhysicsBody.Rotation;
Vector3 linearVelocity = impulse / physObj.Mass;
Vector3 r = position - physObj.MassCenter;
// Calculate torque impulse in world frame: τ = r × impulse
Vector3 torqueImpulseWorld = r.Cross( impulse );
Rotation worldToLocal = physObj.Rotation.Inverse;
Vector3 torqueImpulseLocal = torqueImpulseWorld.Transform( worldToLocal );
var InverseInertiaDiagLocal = physObj.Inertia.Inverse;
// Compute angular velocity change in rad/s (local frame)
Vector3 angularVelocityRadLocal = new(
InverseInertiaDiagLocal.x * torqueImpulseLocal.x,
InverseInertiaDiagLocal.y * torqueImpulseLocal.y,
InverseInertiaDiagLocal.z * torqueImpulseLocal.z
);
const float radToDeg = 180f / MathF.PI;
Vector3 angularVelocityDegLocal = angularVelocityRadLocal * radToDeg;
return (linearVelocity, angularVelocityDegLocal);
Vector3 r = position - com;
Vector3 torque = Vector3.Cross( r, impulse );
Vector3 torqueLocal = bodyRot.Inverse * torque;
Vector3 angularVelocityLocal = torqueLocal * physObj.PhysicsBody.Inertia.Inverse;
AngularVelocity = bodyRot * angularVelocityLocal;
LinearVelocity = impulse * (1 / physObj.Mass);
}
/// <summary>
@@ -74,34 +68,31 @@ public static class PhysicsExtensions
/// <param name="physObj">The physics object</param>
/// <param name="impulse">The impulse acting on the object in kg*units/s (World frame)</param>
/// <param name="position">The location of the impulse in world coordinates</param>
/// <returns>
/// Vector1: Linear impulse on center of mass (World frame)
/// Vector2: Angular impulse on center of mass (Local frame)
/// </returns>
public static (Vector3 LinearImpulse, Vector3 AngularImpulse) CalculateForceOffset(
this PhysicsBody physObj,
/// <param name="LinearImpulse">Linear impulse on center of mass (World frame)</param>
/// <param name="AngularImpulse">Angular impulse on center of mass (World frame)</param>
public static void CalculateForceOffset(
this Rigidbody physObj,
Vector3 impulse,
Vector3 position )
Vector3 position,
out Vector3 LinearImpulse,
out Vector3 AngularImpulse )
{
if ( !physObj.IsValid() || !physObj.MotionEnabled )
{
return (Vector3.Zero, Vector3.Zero);
LinearImpulse = 0;
AngularImpulse = 0;
return;
}
// 1. Linear impulse is the same as the input impulse (conservation of momentum)
Vector3 linearImpulse = impulse;
Vector3 com = physObj.WorldTransform.PointToWorld( physObj.MassCenter );
Rotation bodyRot = physObj.PhysicsBody.Rotation;
// 2. Calculate angular impulse (torque) from the offset force
// τ = r * F (cross product of position relative to COM and force)
Vector3 centerOfMass = physObj.MassCenter;
Vector3 relativePosition = position - centerOfMass;
Vector3 worldAngularImpulse = relativePosition.Cross( impulse );
// Convert angular impulse to local space (since we'll use it with LocalInertia)
Rotation bodyRotation = physObj.Transform.Rotation;
Vector3 localAngularImpulse = bodyRotation.Inverse * worldAngularImpulse;
return (linearImpulse, localAngularImpulse);
Vector3 r = position - com;
Vector3 torque = Vector3.Cross( r, impulse );
Vector3 torqueLocal = bodyRot.Inverse * torque;
Vector3 angularImpulseLocal = torqueLocal * physObj.PhysicsBody.Inertia.Inverse;
AngularImpulse = bodyRot * angularImpulseLocal;
LinearImpulse = impulse;
}
}

View File

@@ -1,55 +0,0 @@
//using Editor;
//using Editor.Assets;
//using Sandbox;
//using VeloX;
//using static Editor.Inspectors.AssetInspector;
//[CanEdit( "asset:engstr" )]
//public class EngineStreamInspector : Widget, IAssetInspector
//{
// EngineStream EngineStream;
// ControlSheet MainSheet;
// public EngineStreamInspector( Widget parent ) : base( parent )
// {
// Layout = Layout.Column();
// Layout.Margin = 12;
// Layout.Spacing = 12;
// MainSheet = new ControlSheet();
// Layout.Add( MainSheet, 1 );
// }
// [EditorEvent.Hotload]
// void RebuildSheet()
// {
// if ( EngineStream is null || MainSheet is null )
// return;
// Layout.Clear( true );
// var text = Layout.Add( new Editor.TextEdit() );
// var but = Layout.Add( new Editor.Button( "Load JSON" ) );
// but.Clicked += () =>
// {
// EngineStream.LoadFromJson( text.PlainText );
// };
// var so = EngineStream.GetSerialized();
// so.OnPropertyChanged += _ =>
// {
// EngineStream.StateHasChanged();
// };
// Layout.Add( ControlWidget.Create( so.GetProperty( nameof( EngineStream.Layers ) ) ) );
// Layout.Add( ControlWidget.Create( so.GetProperty( nameof( EngineStream.Parameters ) ) ) );
// }
// public void SetAsset( Asset asset )
// {
// EngineStream = asset.LoadResource<EngineStream>();
// RebuildSheet();
// }
//}

View File

@@ -0,0 +1,48 @@
using Editor;
using Sandbox;
namespace VeloX;
[CustomEditor( typeof( Pacejka ) )]
public class PacejkaWidget : ControlObjectWidget
{
public override bool SupportsMultiEdit => false;
public override bool IncludeLabel => false;
[CustomEditor( typeof( Pacejka.PacejkaPreset ) )]
private class LateralForceWidget : ControlObjectWidget
{
public LateralForceWidget( SerializedProperty property ) : base( property, true )
{
Layout = Layout.Column();
Layout.Margin = 8f;
Layout.Spacing = 8;
foreach ( var item in TypeLibrary.GetType<Pacejka.PacejkaPreset>().Properties )
{
var row = Layout.AddRow();
row.Spacing = 8;
var propetry = SerializedObject.GetProperty( item.Name );
row.Add( new Label( propetry.Name ) );
row.Add( Create( propetry ) );
}
}
}
private Pacejka Pacejka;
public PacejkaWidget( SerializedProperty property ) : base( property, true )
{
var obj = SerializedObject;
Pacejka = obj.ParentProperty.GetValue<Pacejka>();
Layout = Layout.Column();
Layout.Margin = 8f;
Layout.Add( new Label.Body( $" {ToolTip}" ) { Color = Color.White } );
var tabs = Layout.Add( new TabWidget( null ) );
tabs.AddPage( nameof( Pacejka.Lateral ), null,
Layout.Add( Create( obj.GetProperty( nameof( Pacejka.Lateral ) ) ) )
);
tabs.AddPage( nameof( Pacejka.Longitudinal ), null,
Layout.Add( Create( obj.GetProperty( nameof( Pacejka.Longitudinal ) ) ) )
);
}
}

View File

@@ -0,0 +1,149 @@
using Editor;
using Editor.Assets;
using Editor.Inspectors;
using Sandbox;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace VeloX;
[AssetPreview( "tire" )]
class TirePresetPreview : AssetPreview
{
private Texture texture;
public override bool IsAnimatedPreview => false;
[Range( 0.01f, 1 )] private float Zoom { get; set; } = 1;
private TirePreset Tire;
public AssetPreviewWidget Widget { get; private set; }
public override Widget CreateWidget( Widget parent )
{
Widget = parent as AssetPreviewWidget;
return null;
}
public override Widget CreateToolbar()
{
var info = new IconButton( "settings" );
info.Layout = Layout.Row();
info.MinimumSize = 16;
info.MouseLeftPress = () => OpenSettings( info );
return info;
}
public void OpenSettings( Widget parent )
{
var popup = new PopupWidget( parent )
{
IsPopup = true,
Layout = Layout.Column()
};
popup.Layout.Margin = 16;
var ps = new ControlSheet();
ps.AddProperty( this, x => x.Zoom );
popup.Layout.Add( ps );
popup.MaximumWidth = 300;
popup.Show();
popup.Position = parent.ScreenRect.TopRight - popup.Size;
popup.ConstrainToScreen();
}
public override async Task InitializeAsset()
{
await Task.Yield();
using ( Scene.Push() )
{
PrimaryObject = new()
{
WorldTransform = Transform.Zero
};
var plane = PrimaryObject.AddComponent<ModelRenderer>();
plane.Model = Model.Plane;
plane.LocalScale = new Vector3( 1, 1, 1 );
plane.MaterialOverride = Material.Load( "materials/dev/reflectivity_30.vmat" );
plane.Tint = new Color( 0.02f, 0.04f, 0.03f );
var bounds = PrimaryObject.GetBounds();
SceneCenter = bounds.Center;
SceneSize = bounds.Size;
}
return;
}
public override void UpdateScene( float cycle, float timeStep )
{
if ( !Widget.IsValid() )
return;
Camera.WorldPosition = Vector3.Up * 300;
Camera.Orthographic = true;
Camera.WorldRotation = new Angles( 90, 0, 0 );
var bitmap = new Bitmap( 512, 512 );
Draw( bitmap );
texture.Clear( Color.Black );
//texture.Update( bitmap );
DebugOverlaySystem.Current.Texture( texture, new Rect( 0, Widget.Size ) );
FrameScene();
}
private readonly List<Vector2> pointCache = [];
public TirePresetPreview( Asset asset ) : base( asset )
{
texture = Texture.CreateRenderTarget().WithDynamicUsage().WithScreenFormat().WithSize( 512, 512 ).Create();
Tire = Asset.LoadResource<TirePreset>();
}
private void DrawPacejka( Bitmap bitmap )
{
var tire = Tire.Pacejka;
var width = bitmap.Width;
var height = bitmap.Height;
{ // draw lateral line
pointCache.Clear();
bitmap.SetPen( Color.Red, 1 );
for ( float x = 0; x <= 1; x += 0.01f )
{
float val = tire.PacejkaFy( x ) * Zoom;
pointCache.Add( new( width * x, height - height * val ) );
}
bitmap.DrawLines( pointCache.ToArray() );
}
{ // draw longitudinal line
pointCache.Clear();
bitmap.SetPen( Color.Green, 1 );
for ( float x = 0; x <= 1; x += 0.01f )
{
float val = tire.PacejkaFx( x ) * Zoom;
pointCache.Add( new( width * x, height - height * val ) );
}
bitmap.DrawLines( pointCache.ToArray() );
}
pointCache.Clear();
}
private void Draw( Bitmap bitmap )
{
bitmap.Clear( Color.Black );
bitmap.SetAntialias( true );
DrawPacejka( bitmap );
}
}